Skip to main content

Advertisement

Log in

Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Astaurova OB, Leonova TE, Polyakova IN, Sineokaya IV, Gordeev VK, Yanenko AS (2000) Adaptation of Rhodococcus rhodochrous M8, a producer of acrylamide, to changes in ammonium concentration in the growth medium. Appl Biochem Microbiol 36:15–18

    Article  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  • Barcellos FG, Menna P, Batista SD, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643

    Article  CAS  PubMed  Google Scholar 

  • Baxter J, Cummings SP (2006) The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie Van Leeuwenhoek 90:1–17

    Article  CAS  PubMed  Google Scholar 

  • Brandao PFB, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:5754–5766

    Article  CAS  PubMed  Google Scholar 

  • Coffey L (2008) Molecular analysis of genes involved in nitrile metabolism in Microbacterium sp. AJ115, Rhodococcus erythropolis AJ270, AJ300 and ITCBP. Dissertation, Waterford Institute of Technology

  • Coffey L, Clarke A, Duggan P, Tambling K, Horgan S, Dowling D, O’Reilly C (2009) Isolation of identical nitrilase genes from multiple bacterial strains and real-time PCR detection of the genes from soils provides evidence of horizontal gene transfer. Arch Microbiol 191:761–771

    Article  CAS  PubMed  Google Scholar 

  • Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91

    Article  CAS  PubMed  Google Scholar 

  • De la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  • Duran R, Nishiyama M, Horinouchi S, Beppu T (1993) Characterization of nitrile hydratase genes cloned by DNA screening from Rhodococcus erythropolis. Biosci Biotechnol Biochem 57:1323–1328

    Article  CAS  PubMed  Google Scholar 

  • Innes D, Beacham IR, Beven CA, Douglas M, Laird MW, Joly JC, Burns DM (2001) The cryptic ushA gene in natural isolates of Salmonella enterica (serotype Typhimurium) has been inactivated by a single missense mutation. Microbiol-SGM 147:1887–1896

    CAS  Google Scholar 

  • Ivanova EP, Kurilenko VV, Kurilenko AV, Gorshkova NM, Shubin FN, Nicolau DV, Chelomin VP (2002) Tolerance to cadmium of free-living and associated with marine animals and eelgrass marine gamma-proteobacteria. Curr Microbiol 44:357–362

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Asano Y (2006) Molecular and enzymatic analysis of the “aldoxime-nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol 70:92–101

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4:95–102

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1992) Enzymatic synthesis of acrylamide—a success story not yet over. Trends Biotechnol 10:402–408

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H, Shimizu S (1993) Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1—sequencing and expression of the gene and purification and characterization of the gene-product. Eur J Biochem 217:327–336

    Article  CAS  PubMed  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci USA 93:4267–4272

    Article  CAS  PubMed  Google Scholar 

  • Kubac D et al (2008) Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4. J Mol Catal B Enzym 50:107–113

    Article  CAS  Google Scholar 

  • Legras JL, Chuzel G, Arnaud A, Galzy P (1990) Natural nitriles and their metabolism. World J Microbiol Biotechnol 6:83–108

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  PubMed  Google Scholar 

  • Mongodin EF et al (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2:2094–2106

    Article  CAS  Google Scholar 

  • Nojiri M, Nakayama H, Odaka M, Yohda M, Takio K, Endo I (2000) Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. FEBS Lett 465:173–177

    Article  CAS  PubMed  Google Scholar 

  • O’Mahony R (2004) The molecular analysis of the structure and regulation of the nitrile hydratase/amidase operons of three novel Rhodococcal species. Dissertation, Waterford Institute of Technology

  • O’Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O’Reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ720 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie Van Leeuwenhoek 87:221–232

    Article  PubMed  Google Scholar 

  • Okamoto S, Eltis L (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 65:828–838

    Article  CAS  PubMed  Google Scholar 

  • Patek M, Knoppova M, Volkova O, Pavlik A, Kubac D, Nesvera J, Martinkova L (2009) Organization, regulation and expression of nitrile degradation genes of Rhodococcus erythropolis. N Biotechnol 25:104

    Article  Google Scholar 

  • Potter J, Smith RL, Api AM (2001) An assessment of the release of inorganic cyanide from the fragrance materials benzyl cyanide, geranyl nitrile and citronellyl nitrile applied dermally to the rat. Food Chem Toxicol 39:147–151

    Article  CAS  PubMed  Google Scholar 

  • Precigou S, Goulas P, Duran R (2001) Rapid and specific identification of nitrile hydratase (NHase)- encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol Lett 204:155–161

    Article  CAS  PubMed  Google Scholar 

  • Rzeznicka K, Schatzle S, Bottcher D, Klein J, Bornscheuer UT (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl Microbiol Biotechnol 85:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd edn. CSHL Press

  • Sekine M et al (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346

    Article  CAS  PubMed  Google Scholar 

  • Song L, Yuan HJ, Coffey L, Doran J, Wang MX, Qian S, O’Reilly C (2008) Efficient expression in E. coli of an enantioselective nitrile hydratase from Rhodococcus erythropolis. Biotechnol Lett 30:755–762

    Article  CAS  PubMed  Google Scholar 

  • Tambling K (2007) Isolation and analysis of novel cyano tolerant/degrading microorganisms. Dissertation, Waterford Institute of Technology

  • Wang JY, Wang DX, Zheng QY, Huang ZT, Wang MX (2007) Nitrile biotransformations for the efficient synthesis of highly enantiopure 1-arylaziridine-2-carboxylic acid derivatives and their stereoselective ring-opening reactions. J Org Chem 72:2040–2045

    Article  CAS  PubMed  Google Scholar 

  • Wyatt JM, Knowles CJ (1995) Microbial degradation of acrylonitrile waste effluents—the degradation of effluents and condensates from the manufacture of acrylonitrile. Intl Biodeterior Biodegradation 35:227–248

    Article  CAS  Google Scholar 

  • Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochem 42:12056–12066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding organisations; Technological Sector Research Strand III, SGM summer vacation scholarship. The authors gratefully thank Jacinta Mullins, Siobhan Moran, Cliff Coffey and Adrienne Clarke for providing soil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Coffey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, L., Owens, E., Tambling, K. et al. Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera. Antonie van Leeuwenhoek 98, 455–463 (2010). https://doi.org/10.1007/s10482-010-9459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9459-8

Keywords

Navigation