Skip to main content

Advertisement

Log in

Biochemical characterization of Candida albicans α-glucosidase I heterologously expressed in Escherichia coli

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Protein glycosylation is one of the most common post-translational modifications present in the eukaryotic cell. The N-linked glycosylation is a biosynthetic pathway where an oligosaccharide is added to asparagine residues within the endoplasmic reticulum. Upon addition of the N-linked glycan to nascent proteins, α-glucosidase I removes the outermost α1,2-glucose unit from the N-linked core Glc3Man9GlcNAc2. We have previously demonstrated that the endoplasmic reticulum α-glucosidase I is required for normal cell wall composition, and virulence of the human pathogen Candida albicans. In spite of the importance of this enzyme for normal cell biology, little is known about its structure and the amino acids participating in enzyme catalysis. Here, a DNA fragment corresponding to the 3′-end fragment of C. albicans CWH41, the encoding gene for α-glucosidase I, was expressed in a bacterial system and the recombinant peptide showed α-glucosidase activity, despite lacking 419 amino acids from the N-terminal end. The biochemical characterisation of the recombinant enzyme showed that presence of hydroxyl groups at carbons 3 and 6, and orientation of hydroxyl moiety at C-2 are important for glucose recognition. Additionally, results suggest that cysteine rather than histidine residues are involved in the catalysis by the recombinant enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNP:

Castanospermin

DEPC:

Diethyl pyrocarbonate

DNJ:

1-Deoxynojirimycin

ER:

Endoplasmic reticulum

G3M9 :

Glc3Man9GlcNAc2

MU:

4-Methylumbelliferone

MUαGlc:

4-Methylumbelliferyl-α-d-glucopyranoside

NEM:

N-Ethylmaleimide

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  • Bause E, Erkens R, Schweden J, Jaenicke L (1986) Purification and characterization of trimming glucosidase I from Saccharomyces cerevisiae. FEBS Lett 206:208–212

    Article  CAS  Google Scholar 

  • Bause E, Schweden J, Gross A, Orthen B (1989) Purification and characterization of trimming glucosidase I from pig liver. Eur J Biochem 183:661–669

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Chapel C, Garcia C, Roingeard P, Zitzmann N, Dubuisson J, Dwek RA, Trépo C, Zoulim F, Durantel D (2006) Antiviral effect of α-glucosidase inhibitors on viral morphogenesis and binding properties of hepatitis C virus-like particles. J Gen Virol 87:861–871

    Article  CAS  PubMed  Google Scholar 

  • Courageot M-P, Frenkiel M-P, Duarte Dos Santos C, Deubel V, Despres P (2000) α-Glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 74:564–572

    Article  CAS  PubMed  Google Scholar 

  • Datema R, Romero PA, Legler G, Schwarz RT (1982) Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol. Proc Natl Acad Sci USA 79:6787–6791

    Article  CAS  PubMed  Google Scholar 

  • De Praeter CM, Gerwig GJ, Bause E, Nuytinck LK, Vliegenthart JFG, Breuer W, Kamerling JP, Espeel MF, Martin J-JR, De Paepe AM, Chan NWC, Dacremont GA, Van Coster RN (2000) A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 66:1744–1756

    Article  PubMed  Google Scholar 

  • Dhanawansa R, Faridmoayer A, van der Merwe G, Li YX, Scaman CH (2002) Overexpression, purification, and partial characterization of Saccharomyces cerevisiae processing alpha glucosidase I. Glycobiology 12:229–234

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD (1991) Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5:3055–3063

    CAS  PubMed  Google Scholar 

  • Faridmoayer A, Scaman CH (2005) Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I. Glycobiology 15:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Faridmoayer A, Scaman CH (2007) Truncations and functional carboxylic acid residues of yeast processing alpha-glucosidase I. Glycoconj J 24:429–437

    Article  CAS  PubMed  Google Scholar 

  • Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728

    CAS  PubMed  Google Scholar 

  • Gillmor CS, Poindexter P, Lorieau J, Palcic MM, Somerville C (2002) α-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. J Cell Biol 156:1003–1013

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A (1999a) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96–107

    CAS  PubMed  Google Scholar 

  • Herscovics A (1999b) Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:275–285

    CAS  PubMed  Google Scholar 

  • Hitt R, Wolf DH (2004) DER7, encoding α-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Res 4:815–820

    Article  CAS  PubMed  Google Scholar 

  • Jaeken J, Matthijs G (2001) Congenital disorders of glycosylation. Annu Rev Genomics Hum Genet 2:129–151

    Article  CAS  PubMed  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    Article  CAS  PubMed  Google Scholar 

  • Kilker RD Jr, Saunier B, Tkacz JS, Herscovics A (1981) Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal glucose from the oligosaccharide Glc3Man9GlcNAc2. J Biol Chem 256:5299–5303

    CAS  PubMed  Google Scholar 

  • Klis FM, de Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39 Suppl 1:1–8

    CAS  PubMed  Google Scholar 

  • Mora-Montes HM, López-Romero E, Zinker S, Ponce-Noyola P, Flores-Carreón A (2004) Hydrolysis of Man9GlcNAc2 and Man8GlcNAc2 oligosaccharides by a purified α-mannosidase from Candida albicans. Glycobiology 14:593–598

    Article  CAS  PubMed  Google Scholar 

  • Mora-Montes HM, Bates S, Netea MG, Díaz-Jiménez DF, López-Romero E, Zinker S, Ponce-Noyola P, Kullberg BJ, Brown AJ, Odds FC, Flores-Carreón A, Gow NAR (2007) Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6:2184–2193

    Article  CAS  PubMed  Google Scholar 

  • Mora-Montes HM, López-Romero E, Zinker S, Ponce-Noyola P, Flores-Carreón A (2008) Heterologous expression and biochemical characterization of an α1,2-mannosidase encoded by the Candida albicans MNS1 gene. Mem Inst Oswaldo Cruz 103:724–730

    Article  CAS  PubMed  Google Scholar 

  • Mora-Montes HM, Ponce-Noyola P, Villagómez-Castro JC, Gow NAR, Flores-Carreón A, López-Romero E (2009) Protein glycosylation in Candida. Future Microbiol 4:1167–1183

    Article  CAS  PubMed  Google Scholar 

  • Nather K, Munro CA (2008) Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS Microbiol Lett 285:137–145

    Article  CAS  PubMed  Google Scholar 

  • Romaniouk A, Vijay IK (1997) Structure–function relationships in glucosidase I: amino acids involved in binding the substrate to the enzyme. Glycobiology 7:399–404

    Article  CAS  PubMed  Google Scholar 

  • Saunier B, Kilker RD Jr, Tkacz JS, Quaroni A, Herscovics A (1982) Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J Biol Chem 257:14155–14161

    CAS  PubMed  Google Scholar 

  • Shailubhai K, Pratta MA, Vijay IK (1987) Purification and characterization of glucosidase I involved in N-linked glycoprotein processing in bovine mammary gland. Biochem J 247:555–562

    CAS  PubMed  Google Scholar 

  • Simons JF, Ebersold M, Helenius A (1998) Cell wall 1,6-β-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. EMBO J 17:396–405

    Article  CAS  PubMed  Google Scholar 

  • Soussillane P, D’Alessio C, Paccalet T, Fitchette A-C, Parodi A, Williamson R, Plasson C, Faye L, Gomord V (2009) N-glycan trimming by glucosidase II is essential for Arabidopsis development. Glycoconj J 26:597–607

    Article  CAS  PubMed  Google Scholar 

  • Szumilo T, Kaushal GP, Elbein AD (1986) Purification and properties of glucosidase I from mung bean seedlings. Arch Biochem Biophys 247:261–271

    Article  CAS  PubMed  Google Scholar 

  • Torre-Bouscoulet ME, López-Romero E, Balcázar-Orozco R, Calvo-Méndez C, Flores-Carreón A (2004) Partial purification and biochemical characterization of a soluble α-glucosidase II-like activity from Candida albicans. FEMS Microbiol Lett 236:123–128

    Article  CAS  PubMed  Google Scholar 

  • Trudel GC, Herscovics A, Holland PC (1988) Inhibition of myoblast fusion by bromoconduritol. Biochem Cell Biol 66:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Volker C, De Praeter CM, Hardt B, Breuer W, Kalz-Fuller B, Van Coster RN, Bause E (2002) Processing of N-linked carbohydrate chains in a patient with glucosidase I deficiency (CDG type IIb). Glycobiology 12:473–483

    Article  CAS  PubMed  Google Scholar 

  • Zeng YC, Elbein AD (1998) Purification to homogeneity and properties of plant glucosidase I. Arch Biochem Biophys 355:26–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhou H, Ouyang H, Li Y, Jin C (2008) Afcwh41 is required for cell wall synthesis, conidiation, and polarity in Aspergillus fumigatus. FEMS Microbiol Lett 289:155–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants No. CONACyT-2002-CO1-39528/A-1 and 83414 from Consejo Nacional de Ciencia y Tecnología, México, and Convocatoria 2008 from Dirección de Investigación y Posgrado, Universidad de Guanajuato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor M. Mora-Montes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frade-Pérez, M.D., Hernández-Cervantes, A., Flores-Carreón, A. et al. Biochemical characterization of Candida albicans α-glucosidase I heterologously expressed in Escherichia coli . Antonie van Leeuwenhoek 98, 291–298 (2010). https://doi.org/10.1007/s10482-010-9437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9437-1

Keywords

Navigation