Skip to main content
Log in

Isolation and identification of mucinolytic actinomycetes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Biochemical and physiological tests, and 16S rRNA gene sequences, were used to classify nine Actinomycete strains isolated from soil and sand samples in Thailand. These strains were isolated based on their ability to readily degrade mucin glycoproteins. A turbidometric based mucinolytic assay was developed to confirm this. In addition all strains showed significant production of proteases. Phylogenetic analysis of the strains revealed that from the nine isolated Actinomycete strains eight were closely related to Streptomyces species and one was identified as belonging to the genus Kitasatospora. The biochemical and physiological tests performed identified two strain pairs that were similar (with only 3.9% difference observed) and this was in accordance with the phylogenetic results obtained. The remaining strains were distinct from each other, with the soil-isolated strains forming a separate clade to the sand-isolated strains in the inferred phylogenetic trees. The isolated mucinolytic Actinomycete strains will be the subject of further investigations into their proteolytic and glycosidic activity. Mucin degrading enzymes such as these are studied for their potential to be used for the development of a drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akatsuka H, Kawai E, Imai Y, Sakurai N, Omori K (2003) The Serratia marcescens bioH gene encodes and esterase. Gene 302:185–192

    Article  CAS  PubMed  Google Scholar 

  • Ambrose NC, Mijinyawa MS, de Mendoza H (1998) Preliminary characterisation of extracellular serine proteinases of Dermatophilus congolensis isolates from cattle, sheep and horses. Vet Microbiol 62:321–335

    Article  CAS  PubMed  Google Scholar 

  • Anisha GS, Rojan PJ, Nicemol J, Niladevi KN, Prema P (2008) Production and characterization of partially purified thermostable α-galactosidases from Streptomyces griseoloalbus for food industrial applications. Food Chem 111:631–635

    Article  CAS  Google Scholar 

  • Berry M, Harris A, Lumb R, Powell K (2002) Commensal ocular bacteria degrade mucins. Br J Ophthalmol 86:1412–1416

    Article  CAS  PubMed  Google Scholar 

  • Bockle B, Galunsky B, Muller R (1995) Characterisation of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl Environ Microbiol 61:3705–3710

    CAS  PubMed  Google Scholar 

  • Chandrasekaran S, Dhar SC (1983) A low cost method for the production of extracellular alkaline proteinase using tapioca starch. J Ferment Technol 61:511–514

    CAS  Google Scholar 

  • Chaphalkar S, Dey S (1994) Some aspects of production of extracellular proteases from Streptomyces diastaticus. J Microbial Biotechnol 9:85–100

    CAS  Google Scholar 

  • Charney J, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171:501–505

    CAS  PubMed  Google Scholar 

  • Colina AR, Aumont F, Belhumeur P, De Repentigny L (1996) Development of a method to detect secretory mucinolytic activity from Candida albicans. J Med Vet Mycol 34:401–406

    Article  CAS  PubMed  Google Scholar 

  • El-Shanshoury AR, El-Sayed MA, Sammour RH, El-Shouny WA (1995) Purification and partial characterisation of two extracellular alkaline proteases from Streptomyces corchorusii ST36. Can J Microbiol 41:99–104

    Article  Google Scholar 

  • Frazier NC (1926) A method for the detection of changes in gelatin due to bacteria. J Infect Dis 39:302–309

    Google Scholar 

  • Garcia-Sanchez A, Cerrato R, Larrasa J, Ambrose NC, Parra A, Alonso JM, Hermoso-de-Mendoza M, Rey JM, Mine MO, Carnegie PR, Ellis TM, Masters AM, Pemberton AD, Hermoso-de-Mendoza J (2004) Characterisation of an extracellualr serine protease gene (nasp gene) from Dermatophilus congolensis. FEMS Microbiol Lett 231:53–57

    Article  CAS  PubMed  Google Scholar 

  • Gaskell E, Hobbs G, Rostron C, Hutcheon G (2008) Encapsulation and release of α-chymotrypsin from poly(glycerol adipate-co-ω-pentadecalactone) microparticles. J Microencapsul 25:187–195

    Article  CAS  PubMed  Google Scholar 

  • Geisseler D, Horwath WR (2008) Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem 40:3040–3048

    Article  CAS  Google Scholar 

  • Gibb DG, Strohl RW (1988) Physiological regulation of protease activity in Streptomyces penutius. Can J Microbiol 34:187–190

    CAS  PubMed  Google Scholar 

  • Gordon RE (1968) The taxonomy of soil bacteria. In: Gray TRG, Parkinson D (eds) Ecology of soil bacteria: an international symposium. Liverpool University Press, Liverpool

    Google Scholar 

  • Gordon RE, Mihm JM (1957) A comparative study of some strains received as Nocardiae. J Bacteriol 73:15–27

    CAS  PubMed  Google Scholar 

  • Goso Y, Ishihara K, Sugawara S, Hotta K (2001) Purification and characterization of α-L-fucosidases from Streptomyces sp. OH11242. Comp Biochem Physiol B 130:375–383

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Beg QK, Khan S, Chauhan B (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60:381–395

    Article  CAS  PubMed  Google Scholar 

  • Haider K, Hossain A, Wanke C, Qadri F, Ali S, Nahar S (1993) Production of mucinase and neuraminidase and binding of Shigella to intestinal mucin. J Diarrhoeal Dis Res 11:88–92

    CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Henrissat T, Sulzenbacher G, Bourne Y (2008) Glycosyltransferases, glycoside hydrolases: surprise, surprise!. Curr Opin Struct Biol 18:527–533

    Article  CAS  PubMed  Google Scholar 

  • Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG (1989) Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31:272–277

    Article  CAS  Google Scholar 

  • Homer KA, Whiley RA, Beighton D (1994) Production of specific glycosidase activities by Streptococcus intermedius strain UNS35 grown in the presence of mucin. J Med Microbiol 41:184–190

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich

    Google Scholar 

  • Hoskisson P, Sharples G, Hobbs G (2006) Differentiation and protease production in Micromonospora echinospora (ATCC 15837). Antonie van Leeuwenhoek 89:191–195

    Article  CAS  PubMed  Google Scholar 

  • Hsu SC, Lockwood JL (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    CAS  PubMed  Google Scholar 

  • Iwase H, Ishii I, Ishihara K, Tanaka Y, Omura S, Hotta K (1988) Release of oligosaccharides possessing reducing-end N-acetylgalactosamine from mucus glycoproteins in Streptomyces sp. OH-11242 culture medium through action of endo-type glycosidase. Biochem Bioph Res Co 151:422–428

    Article  CAS  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporangenous aerial mycelia is a fluctuating characteristics. J Bacteriol 57:141–145

    Google Scholar 

  • Kang SG, Kim IS, Rho YT, Lee KJ (1995) Production dynamics of extracellular proteases accompanying morphological differentiation of Streptomyces albidoflavus SMF301. Microbiology 141:3095–3103

    Article  CAS  Google Scholar 

  • Katayama T, Fujita K, Yamamoto K (2005) Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 99:457–465

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Cha J (2002) Development of a rapid spectrophotometric method for detecting bacterial mucinase complex. J Microbiol Biotechnol 12:345–348

    CAS  Google Scholar 

  • Kim IS, Lee KJ (1995) Physiological roles of leupeptin and extracellular proteases in mycelium development of Streptomyces exfoliatus SMF13. Microbiology 141:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Lee KJ (1996) Tripsin-like proteases of Streptomyces exfoliatus SMF13, a potential agent in mycelial differentiation. Microbiology 142:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Kitadokoro K, Tsuzuki H, Nakamura E, Sato T, Teraoka H (1994) Purification, characterization, primary structure, crystallization and preliminary crystallographic study of a serine proteinase from Streptomyces fradiae ATCC 14544. Eur J Biochem 220:55–61

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17:561–594

    Article  CAS  PubMed  Google Scholar 

  • Kuster E, Williams ST (1964) Production of hydrogen sulphide by streptomycetes and methods for its detection. Appl Microbiol 12:46–52

    Google Scholar 

  • Mantle M, Rombough C (1993) Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica. Infect Immun 61:4131–4138

    CAS  PubMed  Google Scholar 

  • Miura T, Okamoto K, Yanase H (2005) Purification and characterization of extracellular 1, 2-α-L-fucosidase from Bacillus cereus. J Biosci Bioeng 99:629–635

    Article  CAS  PubMed  Google Scholar 

  • Mizusawa K, Ichishima E, Yoshida F (1964) Studies on the proteolytic enzymes of thermophilic Streptomyces I. Purification and some properties. Agric Biol Chem 28:884–895

    CAS  Google Scholar 

  • Mizusawa K, Ichishima E, Yoshida F (1966) Studies on the proteolytic enzymes of thermophilic Streptomyces II. Identification of the organism and some conditions of protease formation. Agric Biol Chem 30:35–41

    CAS  Google Scholar 

  • O’Brien M, Davies GH (1982) Enzymatic profile of Pseudomonas maltophilia. J Clin Microbiol 16:417–421

    PubMed  Google Scholar 

  • Omura S, Takahashi Y, Iwai Y, Tanaka H (1982) Kitasatosporia, a new genus of the order Actinomycetales. J Antibiot 35:1013–1019

    CAS  PubMed  Google Scholar 

  • Petinate SDG, Branquinha MH, Coelho RRR, Giovanni-De-Simone S (1999) Purification and partial characterisation of an extracellular serine-proteinase of Streptomyces cyaneus isolated for Brazilian cerrado soil. J Appl Bacteriol 87:557–563

    CAS  Google Scholar 

  • Rintala H, Nevalainen A, Ronka E, Suutari M (2001) PCR primers targeting the 16S rRNA gene for the specific detection of streptomycetes. Mol Cell Probes 15:337–347

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Sato F, Odaa H, Kato M, Tekeda H, Sugiyama T, Asaka M (2002) Removal of mucus for ultrastructural observation of the surface of human gastric epithelium using pronase. Helicobacter 7:112–115

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterisation of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Sierra G (1956) A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22

    Article  Google Scholar 

  • Tamai Y, Saeki K, Iwate J, Watanabe Y (1994) Purification and characterisation of an alkaline protease from Oerskovia xanthineolytica TK-1. J Ferment Bioeng 77:554–556

    Article  Google Scholar 

  • Tanaka Y, Takahashi E, Shinose M, Omura S, Ishii-Karakasa I, Iwase H, Hotta K (1998) Screening and fermentation of endo-α-N-acetylgalactosaminidase S, a mucin-hydrolysing enzyme from Streptomyces acting on Gal-NAc-O-Ser (Thr) linkage. J Ferment Bioeng 85:381–387

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tsujibo H, Miyamoto K, Hasegawa T, Inamori Y (1990) Purification and characterisation of two types of serine proteases produced by an alkalophilic actinomycete. J Appl Bacteriol 69:520–529

    CAS  PubMed  Google Scholar 

  • Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341

    CAS  PubMed  Google Scholar 

  • Wateewuthajarn K, Pinphanichakarn P (2000) Purification and characterisation of xylanases from Streptomyces sp. PC22. J Sci Res Chula Univ 25:245–256

    CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Williams SJ, Mark BL, Vocadlo DJ, James MNG, Withers SG (2002) Aspatate 313 in Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilising the transition state. J Biol Chem 277:40055–40065

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsie E. Gaskell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaskell, E.E., Sihanonth, P., Rostron, C. et al. Isolation and identification of mucinolytic actinomycetes. Antonie van Leeuwenhoek 97, 211–220 (2010). https://doi.org/10.1007/s10482-009-9402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9402-z

Keywords

Navigation