Skip to main content
Log in

Steady state growth space study of Lactococcus lactis in D-stat cultures

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Growth space of Lactococcus lactis subsp. lactis IL1403 was studied at constant growth rate using D-stat cultivation technique. Starting from steady state conditions in a chemostat culture (μ = 0.2 h−1), the pH and/or temperature were continuously changed in the range of 5.4–6.4 and 26–34°C, respectively, followed by the return to the initial environmental conditions. Based on substrate consumption and product formation yields and expression changes of 1,920 genes, it was shown that changes of physiological state were not dependent on the direction of movement (from pH 6.3 to 5.4 or from 5.4 to 6.3), showing that quasi steady state values in D-stat corresponded to the steady state values in chemostats. Relative standard deviation of growth characteristics in triplicate D-stat experiments was below 10%. Continuing the experiment and reestablishing initial growth conditions revealed in average 7% difference (hysteresis) in growth characteristics when comparing chemostat steady state cultures prior and after the change of environmental conditions. Similarly, shifts were also seen at gene expression levels. The large amount of quantitatively reliable data obtained in this study provided a new insight into dynamic properties of bacterial physiology, and can be used for describing the growth space of microorganisms by modeling cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamberg K, Lahtvee P, Valgepea K, Abner K, Vilu R (2009) Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures. Antonie Van Leeuwenhoek 95(3):219–226

    Article  PubMed  Google Scholar 

  • Dressaire C, Redon E, Milhem H, Besse P, Loubière P, Cocaign-Bousquet M (2008) Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. BMC Genomics 9:343

    Article  PubMed  Google Scholar 

  • Even S, Lindley ND, Cocaign-Bousquet M (2001) Molecular physiology of sugar catabolism in Lactococcus lactis IL1403. J Bacteriol 183(13):3817–3824

    Article  CAS  PubMed  Google Scholar 

  • Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 149(Pt 7):1935–1944

    Article  CAS  PubMed  Google Scholar 

  • Francis JC, Hansche PE (1973) Directed evolution of metabolic pathways in microbial populations II. A repeatable adaptation in Saccharomyces cerevisiae. Genetics 74(2):259–265

    CAS  PubMed  Google Scholar 

  • Hoskisson PA, Hobbs G (2005) Continuous culture—making a comeback? Microbiology 151(10):3153–3159

    Article  CAS  PubMed  Google Scholar 

  • Jensen NBS, Melchiorsen CR, Jokumsen KV, Villadsen J (2001) Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl Environ Microbiol 67(6):2677–2682

    Article  CAS  PubMed  Google Scholar 

  • Jobé AM, Herwig C, Surzyn M, Walker B, Marison I, von Stockar U (2003) Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing. Biotechnol Bioeng 82(6):627–639

    Article  PubMed  Google Scholar 

  • Kasemets K, Drews M, Nisamedtinov I, Adamberg K, Paalme T (2003) Modification of A-stat for the characterization of microorganisms. J Microbiol Methods 55(1):187–200

    Article  CAS  PubMed  Google Scholar 

  • Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie Van Leeuwenhoek 82(1–4):3–27

    Article  CAS  PubMed  Google Scholar 

  • Le Marc Y, Pin C, Baranyi J (2005) Methods to determine the growth domain in a multidimensional environmental space. Int J Food Microbiol 100(1–3):3–12

    Article  PubMed  Google Scholar 

  • Maharjan RP, Seeto S, Ferenci T (2007) Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J Bacteriol 189(6):2350–2358

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan E, Condon S (1999) Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis. Appl Environ Microbiol 65(6):2287–2293

    PubMed  Google Scholar 

  • Sánchez B, Champomier-Vergès M, Collado MDC, Anglade P, Baraige F, Sanz Y, de los Reyes-Gavilán CG, Margolles A, Zagorec M (2007) Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl Environ Microbiol 73(20):6450–6459

    Article  PubMed  Google Scholar 

  • Thomas TD, Ellwood DC, Longyear VM (1979) Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138(1):109–117

    CAS  PubMed  Google Scholar 

  • van der Sluis C, Westerink BH, Dijkstal MM, Castelein SJ, van Boxtel AJ, Giuseppin ML, Tramper J, Wijffels RH (2001) Estimation of steady-state culture characteristics during acceleration-stats with yeasts. Biotechnol Bioeng 75(3):267–275

    Article  PubMed  Google Scholar 

  • Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661

    Article  CAS  PubMed  Google Scholar 

  • Vitreschak AG, Lyubetskaya EV, Shirshin MA, Gelfand MS, Lyubetsky VA (2004) Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiol Lett 234(2):357–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sten Erm for useful discussions. The financial support for this research was provided by the Enterprise Estonia project EU22704, and Ministry of Education, Estonia, through the grant SF0140090s08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raivo Vilu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahtvee, PJ., Valgepea, K., Nahku, R. et al. Steady state growth space study of Lactococcus lactis in D-stat cultures. Antonie van Leeuwenhoek 96, 487–496 (2009). https://doi.org/10.1007/s10482-009-9363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9363-2

Keywords

Navigation