Skip to main content
Log in

Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia

  • ORIGINAL PAPER
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The taxonomic position of “Agrobacterium radiobacter strain 204,” used in Russia as a cereal crop growth promoting inoculant, was derived by a polyphasic approach. The phenotypic analyses gave very similar biochemical profiles for strain 204, Rhizobium radiobacter NCIMB 9042 (formerly the A. radiobacter type strain) and R. radiobacter NCIMB 13307 (formerly the Agrobacterium␣tumefaciens type strain). High percentage similarities, above the species separation level, were observed between the 16S rRNA, fusA and rpoB housekeeping gene sequences of these three strains, and the genomic DNA–DNA hybridisation of strain 204 against the type strain of R. radiobacter NCIMB 9042 was over 70%. Strain 204 is not phytopathogenic and it does not fix atmospheric N2 or form a physical association with the roots of barley. Strain 204 culture and culture supernatant stimulated the rate of mobilisation of seed reserves of barley in darkness and promoted its shoot growth in the light. Gibberellic acid (GA) concentration was 1.3 µM but indole acetic acid was undetectable (<50 nM) in cultures of strain 204. It is concluded that strain 204 is phenotypically and genotypically very similar to the current R. radiobacter type strain and that the mechanism of its effect on growth of cereals is via the production of plant growth promoting substances. GA is likely to play an important role in the strain 204 stimulation of early growth of barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand VK, Heberlein GT (1997) Crown gall tumorigenesis in potato tuber tissue. Am J Bot 64:153–158

    Article  Google Scholar 

  • Andrews M, James EK, Cummings SP, Zavalin AA, Vinogradova LV, McKenzie BA (2003) Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35:209–229

    CAS  Google Scholar 

  • Andrews M, Love BG, Sprent JI (1989) The effects of different external nitrate concentrations on growth of Phaseolus vulgaris cv. Seafarer at chilling temperatures. Ann Appl Biol 114:195–204

    Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fert Soil 30:485–489

    Article  Google Scholar 

  • Bairamov LE, Vinogradova LV, Zavalin AA (2001) Nitrogen nutrition and productivity of barley as conditioned by the application of associative diazotrophs. Aspects Appl Biol 63:135–139

    Google Scholar 

  • Bajracharya D (1999) Experiments in plant physiology. Narosa Publishing House, New Delhi

    Google Scholar 

  • Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF (1998) GenBank. Nucleic Acids Res 26:1–7

    Article  PubMed  CAS  Google Scholar 

  • Briggs DE (1992) Barley germination: biochemical changes and hormonal control. In: Shrewry PR (ed) Barley: genetics. Biochemistry, molecular biology and biotechnology. Biotechnology in agriculture 5. CAB International, Wallingford, pp 369–401

    Google Scholar 

  • Burris RH (1972) Nitrogen fixation assay – methods and techniques. Meth Enzymol 24B:415–431

    Article  PubMed  CAS  Google Scholar 

  • Conn HJ (1942) Validity of the genus Alcaligenes. J Bact 44:353–360

    PubMed  CAS  Google Scholar 

  • de Lajudie P, Willems A, Nick G, Mohamed SH, Torck U, Coopman R, Filali-Maltouf A, Kersters K, Dreyfus B, Lindstrom K, Gillis M (1999) Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22:119–132

    Google Scholar 

  • Döbereiner J (1992) The genera Azospirillum and Herbaspirillum. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 3, 2nd edn. Springer-Verlag, New York, pp 2236–2253

    Google Scholar 

  • Eardly BD, Young JPW, Selander RK (1992) Phylogenetic position of Rhizobium sp. strain OR191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl Environ Microbiol 58:1809–1815

    PubMed  CAS  Google Scholar 

  • El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertil Soils 28:377–381

    Article  CAS  Google Scholar 

  • Farrand SK, van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1281–1287

    Article  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogenetic inference package), version 3.5.1. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA

    Google Scholar 

  • Ghosh AC, Basu PS (1997) Culture growth and IAA production by a microbial diazotropic symbiont of stem-nodules of the legume Aeschynomene aspera. Folia Microbiol 42:595–600

    CAS  Google Scholar 

  • Haas JH, Moore LW, Ream W, Manulis S (1995) Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:2879–2884

    PubMed  CAS  Google Scholar 

  • Haukka K, Lindstrom K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    PubMed  CAS  Google Scholar 

  • Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243

    PubMed  CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  • Kanvinde L, Sastry GRK (1990) Agrobacterium tumefaciens is a diazotrophic bacterium. Appl Environ Microbiol 56:2087–2092

    PubMed  CAS  Google Scholar 

  • Magalhães SM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Brasil Cien 55:417–430

    Google Scholar 

  • Mantelin J, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  PubMed  CAS  Google Scholar 

  • Mhamdi R, Mrabet M, Laguerre G, Tiwari R, Aouani ME (2005) Colonisation of Phaseolus vulgaris nodules by Agrobacterium-like strains. Can J Microbiol 51:105–111

    Article  PubMed  CAS  Google Scholar 

  • Moore LW, Bouzar H, Burr T (2001) Agrobacterium. In: Schaad NW, Jones JB, Chun W (eds) Laboratory guide for identification of plant pathogenic bacteria. Am. Phytopath. Soc., St. Paul, USA, pp 17–35

    Google Scholar 

  • Olivares GL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol Fert Soil 21:197–200

    Google Scholar 

  • Omel’ianets TG, Guloian TE, Filatova IN (1992) A toxicological evaluation of an Agrobacterium radiobacter-based biological fertilizer. Mikrobiol Zhurnal 54:40–43

    CAS  Google Scholar 

  • Ona O, Smets I, Gysegom P, Bernaerts K, Van Impe J, Prinsen E, Vanderleyden J (2003) The effect of pH on␣indole-3-acetic acid (IAA) biosynthesis of Azospirillum brasilense Sp7. Symbiosis 35:199–208

    CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Perrine FM, Rolfe BG, Hynes MF, Hocart CH (2004) Gas chromatography-mass spectroscopy analysis of indolacetic acid and tryptophan following aqueous chloroformate derivatisation of Rhizobium exudates. Plant Physiol Biochem 42:723–729

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Olivares FL, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:101–104

    Article  Google Scholar 

  • Rosado AS, Duarte GF, Seldin L, Van Elsas JD (1998) Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl Environ Microbiol 64:2770–2779

    PubMed  CAS  Google Scholar 

  • Rowell P, James W, Smith WL, Handley LL, Scrimgeour CM (1998) 15N discrimination in molybdenum- and vanadium-grown N2-fixing Anabaena variabilis and Azotobacter vinelandii. Soil Biol Biochem 30:2177–2180

    Article  CAS  Google Scholar 

  • Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Env Microbiol 6:754–759

    Article  CAS  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  PubMed  CAS  Google Scholar 

  • Velázquez E, Peix A, Zurdo Piñeiro JL, Palomo JL, Mateos PF, Rivas R, Muñoz-Adelantado E, Toro N, Garcia-Benavides P, Martizez-Molina E (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. MPMI 18:1325–1332

    PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn (1942) and Allorhizobium undicola de Lajudie et al., 1998 as new combinations: Rhizobium radiobacter, R.␣rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    PubMed  CAS  Google Scholar 

  • Zakharova EA, Shcherbakov AA, Brudnik VV, Skripko NG, Bulkhin NS, Ignatov VV (1999) Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Insights from quantum chemistry. Eur J Biochem 259:572–576

    Article  PubMed  CAS  Google Scholar 

  • Zavalin AA, Vinogradova LV, Dukhanina TM, Vaulin AV, Christotin MV, Sologub DB, Gabibov M, Lekomtsev PV, Pasynkov AV (2001) Geographical regularities of effect of inoculation with associative diazotrophs on the productivity of cereals. Aspects Appl Biol 63:123–127

    Google Scholar 

Download references

Acknowledgements

This work was supported by awards from the Royal Society, NATO and the Society for General Microbiology to Dr. L.V. Vinogradova. R. radiobacter strain 204 was kindly provided by Dr. A.P. Kozhemyakov at the All-Russia Research Institute for Agricultural Microbiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Cummings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphry, D.R., Andrews, M., Santos, S.R. et al. Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia. Antonie van Leeuwenhoek 91, 105–113 (2007). https://doi.org/10.1007/s10482-006-9100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9100-z

Keywords

Navigation