Skip to main content

Advertisement

Log in

Pricing and recycling decisions of remanufacturing alliances with third-party recycling platform

  • S.I. : OR for Sustainability in Supply Chain Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we investigate a closed-loop supply chain where the original manufacturer plays as the channel leader and the third-party recycling platform participates in the recycling of used products. The remanufacturer produces remanufactured products through a remanufacturing license, and four different types of alliances are investigated as: the third-party recycling platform and the original manufacturer alliance, the third-party recycling platform and the remanufacturer alliance, the original manufacturer and the remanufacturer alliance, the original manufacturer and the remanufacturer and the third-party recycling platform alliance. We compare the overall benefits of different alliances and find that the alliance of the original manufacturer, the remanufacturer and the third-party recycling platform has the largest income. We set up a reasonable profit distribution mechanism under the alliance, which can make the three parties get the optimal benefit and make the whole CLSC remanufacturing alliance reach the Pareto optimum. We also compare the recycling rates across alliances and find that the recycling rate is highest in the case of the remanufacturer and the third-party recycling platform alliance, whose recycling rate is positively correlated with recycling costs. Importantly, we make a comparative analysis of the equilibrium decisions and profit distribution of the four alliance models with the participation of the third-party platform. Both the original manufacturer and the remanufacturer need to seek a third-party platform as partners, but if there are conflicts between two manufacturers, the third-party recycling platform may become a mediator between the original manufacturer and the remanufacturer in the supply chain. The results of our study will provide a theoretical basis for enterprises to choose the appropriate alliance in closed-loop supply chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayres, R., Ferrer, G., & Leynseele, T. V. (1997). Eco-efficiency, asset recovery and remanufacturing. European Management Journal, 15, 557–574.

    Article  Google Scholar 

  • Cao, K., Bo, Q., & He, Y. (2018). Optimal trade-in and third-party collection authorization strategies under trade-in subsidy policy. Kybernetes, 47(5), 854–872.

    Article  Google Scholar 

  • Cao, K., He, P., & Liu, Z. (2019). Production and pricing decisions in a dual-channel supply chain under remanufacturing subsidy policy and carbon tax policy. Journal of the Operational Research Society, 71, 1–17.

    Google Scholar 

  • Chai, J., Qian, Z., Wang, F., et al. (2021). Process innovation for green product in a closed loop supply chain with remanufacturing. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03888-y

    Article  Google Scholar 

  • Chen, X., Wang, X., & Xia, Y. (2019). Production coopetition strategies for competing manufacturers that produce partially substitutable products. Production and Operations Management, 28(6), 1446–1464.

    Article  Google Scholar 

  • Chiang, W. K., Chhajed, D., & Hess, J. D. (2003). Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design. Management Science, 49, 1–20.

    Article  Google Scholar 

  • Ferguson, M., & Toktay, L. B. (2006). The effect of competition on recovery strategies. Production and Operations Management, 15(3), 351–368.

    Article  Google Scholar 

  • Ghamat, S., Zaric, G. S., & Pun, H. (2021). Care-coordination: Gain-sharing agreements in bundled payment models. Production and Operations Management, 30(5), 1457–1474.

  • He, P., He, Y., & Xu, H. (2019). Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy. International Journal of Production Economics, 213, 108–123.

    Article  Google Scholar 

  • Heydari, J., Govindan, K., & Jafari, A. (2017). Reverse and closed loop supply chain coordination by considering government role. Transportation Research Part D: Transport and Environment, 52(5), 379–398.

    Article  Google Scholar 

  • Hong, X., Zhang, H., Zhong, Q., et al. (2016). Optimal decisions of a hybrid manufacturing-remanufacturing system within a closed-loop supply chain. European Journal of Industrial Engineering, 10(1), 21–50.

    Article  Google Scholar 

  • Huang, Y., & Wang, Z. (2017). Closed-loop supply chain models with product take-back and hybrid remanufacturing under technology licensing. Journal of Cleaner Production, 142, 3917–3927.

    Article  Google Scholar 

  • Huang, Y., & Wang, Z. (2020). Information sharing in a closed-loop supply chain with learning effect and technology licensing. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.122544

    Article  Google Scholar 

  • Huang, Y., Zheng, B., & Wang, Z. (2021). Supplier–remanufacturing and manufacturer–remanufacturing in a closed-loop supply chain with remanufacturing cost disruption. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04230-w

    Article  Google Scholar 

  • Jena, S. K., & Sarmah, S. P. (2014). Price competition and cooperation in a duopoly closed-loop supply chain. International Journal of Production Economics, 156, 346–360.

    Article  Google Scholar 

  • Jian, J., Li, B., Zhang, N., et al. (2021). Decision-making and coordination of green closed-loop supply chain with fairness concern. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2021.126779

    Article  Google Scholar 

  • Li, Y., Wang, Z., Ma, J., et al. (2021). Remanufacturing mode selection regarding technology development. Discrete Dynamics in Nature and Society. https://doi.org/10.1155/2021/8835868

    Article  Google Scholar 

  • Liu, Z., Chen, J., & Diallo, C. (2018). Optimal production and pricing strategies for a remanufacturing manufacturer. International Journal of Production Economics., 204, 290–315.

    Article  Google Scholar 

  • Ma, Z. J., Zhou, Q., Dai, Y., & Guan, G. (2018). To license or not to license remanufacturing business? Sustainability, 10(2), 1–21.

    Article  Google Scholar 

  • Mitra, S. (2016). Models to explore remanufacturing as a competitive strategy under duopoly. Omega, 59, 215–227.

    Article  Google Scholar 

  • Mondal, C., & Giri, B. C. (2021). Investigating a green supply chain with product recycling under retailer’s fairness behavior. Journal of Industrial & Management Optimization. https://doi.org/10.3934/jimo.2021129

    Article  Google Scholar 

  • Mutha, A., Bansal, S., & Guide, V. D. R. (2019). Selling assortments of used products to third-party remanufacturers. Production and Operations Management, 28(7), 1792–1817.

    Google Scholar 

  • Pal, B., & Sarkar, A. (2021). Optimal strategies of a dual-channel green supply chain with recycling under retailer promotional effort. RAIRO - Operations Research, 55(2), 415–431.

    Article  Google Scholar 

  • Qin, X. H., Su, Q., Huang, S. H., & Liu, M. (2017). Service quality coordination contracts for online shopping service supply chain with competing service providers: Integrating fairness and individual rationality. Operational Research, 144, 387–402.

    Google Scholar 

  • Rahmani, M., Gui, L., & Atasu, A. (2020). The implications of recycling technology choice on extended producer responsibility. Production and Operations Management, 30(2), 522–542.

    Article  Google Scholar 

  • Rau, H., Budiman, S. D., Regencia, R. C., & Salas, A. D. P. (2019). A decision model for competitive remanufacturing systems considering technology licensing and product quality strategies. Journal of Cleaner Production, 239, 1–17.

    Article  Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & Wassenhove, L. N. V. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Article  Google Scholar 

  • Shi, J. M., Zhang, G. Q., & Sha, J. C. (2011). Optimal production planning for a multi-product closed-loop system with uncertain demand and return. Computers & Operations Research, 38(3), 641–650.

    Article  Google Scholar 

  • Tian, F., SoÅ¡ić, G., & Debo, L. (2019). Manufacturers’ competition and cooperation in sustainability: Stable recycling alliances. Management Science, 65, 1–21.

    Article  Google Scholar 

  • Vedantam, A., & Iyer, A. (2021). Revenue-sharing contracts under quality uncertainty in remanufacturing. Production and Operations Management, 30(7), 2008–2026.

    Article  Google Scholar 

  • Wan, N. N., & Hong, D. J. (2019). The impacts of subsidy policies and transfer pricing policies on the closed-loop supply chain with dual collection channels. Journal of Cleaner Production, 224, 881–891.

    Article  Google Scholar 

  • Wang, M., Tian, T., & Zhu, X. (2019a). Self-remanufacturing or outsourcing? Hybrid manufacturing systems with remanufacturing options under yield uncertainty. IEEE Access, 7, 150642–150656.

    Article  Google Scholar 

  • Wang, W. B., Zhang, M., Zhao, L., & Zhou, Z. Y. (2019b). Decision-making model of closed-loop supply chain based on third-party collector’s fairness concern. Journal of Systems Engineering, 34, 409–421. (in Chinese).

    Google Scholar 

  • Wu, C. H., & Kao, Y. J. (2018). Cooperation regarding technology development in a closed-loop supply chain. European Journal of Operational Research, 267(2), 523–539.

    Article  Google Scholar 

  • Wu, X. L., & Zhou, Y. (2019). Buyer-specific versus uniform pricing in a closed-loop supply chain with third-party remanufacturing. European Journal of Operational Research, 273(2), 548–560.

    Article  Google Scholar 

  • Xie, J. P., Liang, L., Liu, L. H., & Ieromonachou, P. (2017). Coordination contracts of dual-channel with cooperation advertising in closed-loop supply chains. International Journal of Production Economics, 183, 528–538.

    Article  Google Scholar 

  • Yan, G., Song, Q., Ni, Y., et al. (2021). Pricing, carbon emission reduction and recycling decisions in a closed-loop supply chain under uncertain environment. Journal of Industrial & Management Optimization. https://doi.org/10.1155/2020/5351867

    Article  Google Scholar 

  • Yi, P. X., Huang, M., Guo, L. J., & Shi, T. L. (2016). Dual recycling channel decision in retailer oriented closed-loop supply chain for construction machinery remanufacturing. Journal of Cleaner Production, 137, 1393–1405.

    Article  Google Scholar 

  • Zanjirani Farahani, R., Asgari, N., & Van Wassenhove, L. N. (2021). Fast fashion, charities, and the circular economy: Challenges for operations management. Production and Operations Management. https://doi.org/10.1111/poms.13596

    Article  Google Scholar 

  • Zhao, J. J., Wang, C. X., & Xu, L. (2019a). Decision for pricing, service, and recycling of closed-loop supply chains considering different remanufacturing roles and technology authorizations. Computers & Industrial Engineering, 132, 59–73.

    Article  Google Scholar 

  • Zhao, Y., Wang, W. J., & Ni, Y. (2019b). EPR system based on a reward and punishment mechanism: Producer-led product recycling channels. Waste Management, 103, 198–207.

    Article  Google Scholar 

  • Zheng, B., & Hong, X. (2021). Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization. https://doi.org/10.3934/jimo.2021035

    Article  Google Scholar 

  • Zou, Z. B., Wang, J. J., Deng, G. S., & Chen, H. Z. (2016). Third-party remanufacturing mode selection: Outsourcing or authorization? Transportation Research Part E: Logistics and Transportation Review, 87, 1–19.

    Article  Google Scholar 

  • Zu-Jun, M., Zhang, N., Dai, Y., & Shu, H. (2016). Managing channel profits of different cooperative models in closed-loop supply chains. Omega, 59, 251–262. https://doi.org/10.1016/j.omega.2015.06.013

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Hubei province university philosophy and social science research major project (provincial social science fund pre-funded project) (19ZD036), the key research base of humanities and social Sciences in colleges and universities in Hubei Province-Enterprise decision support research center project (DSS20210403) and Hubei provincial education department philosophy and social science research key project (20D056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix 1: The solving process of equilibrium decisions in different models

In order to facilitate the calculation and simplify the results, we make some parameters replacement in the calculation process, let \(L_{1} = \delta - 1;\;L_{2} = k\delta ;\;L_{3} = A - B;\;L = - AB + B^{2} + 4k\delta .\)

1.1.1 The solving process of model MT

It is easy to obtain the Hessian matrix of the retailer’s profit function:

$$ H_{R}^{MT} = \left[ {\begin{array}{*{20}c} { - \frac{2}{1 - \delta }} & {\frac{2}{1 - \delta }} \\ {\frac{2}{1 - \delta }} & { - \frac{2}{{\delta \left( {1 - \delta } \right)}}} \\ \end{array} } \right] $$
(A1)

For \(- \frac{2}{1 - \delta } < 0\), if \( \left| {H_{R}^{MT} } \right| = \frac{4}{{\delta \left( {1 - \delta } \right)}} > 0\), that is to say \(0 < \delta < 1\) is satisfied. So the Hessian matrix is negatively definite, and taking the first-order derivative of \({\Pi }_{L}^{MT}\) with respect to pN and \(p_{{R_{1} }}\), we can obtain the unique optimal solution. Then we can derive the following equilibrium solution by using the reverse recursion method.

$$ \left\{ {\begin{array}{*{20}c} {p_{N} \left( {{\upomega }_{N} } \right) = \frac{{1 + {\upomega }_{N} }}{2}} \\ {p_{{R_{1} }} \left( {{\upomega }_{R1} } \right) = \frac{{\delta + {\upomega }_{{R_{1} }} }}{2}} \\ \end{array} } \right. $$
(A2)

Substituting (A1) into (2), we can obtain the Hessian matrix of (2):

$$ H_{L}^{MT} = \left[ {\begin{array}{*{20}c} {\frac{1}{ - 1 + \delta }} & { - \frac{1}{ - 1 + \delta }} & 0 \\ {\frac{1}{1 - \delta }} & { - \frac{1}{{\delta - \delta^{2} }}} & {\frac{A}{2\delta }} \\ 0 & {\frac{A}{2\delta }} & { - 2k} \\ \end{array} } \right] $$
(A3)

For \( \frac{1}{ - 1 + \delta } < 0\), if \( \left| {H_{L}^{MT} } \right| = - \frac{2k}{{\delta \left( {\delta - 1} \right)^{2} }} < 0\), that is to say \(\frac{1}{ - 1 + \delta }{ }\left( {{ } - \frac{1}{{\delta - \delta^{2} }}{ }} \right) - \left( {\frac{1}{1 - \delta }} \right)^{2} > 0\) is satisfied. So the Hessian matrix is negatively definite, and taking the first-order derivative of \({\Pi }_{L}^{MT}\) with respect to \(\upomega _{N} ,\upomega _{{R_{1} }}\) and Ï„, we can obtain the unique optimal solution of \({\Pi }_{L}^{MT}\) with respect to \({\upomega }_{N} ,{\upomega }_{{R_{1} }}\) and Ï„.

Then, we can get the following equilibrium solution by using the reverse recursion method.

$$ {\upomega }_{N}^{{MT^{*} }} = \frac{{ - 8k\delta + A^{2} \left( {1 + \delta } \right) + \left( {A^{2} - 8k\delta } \right)C_{N} - A^{2} C_{{R_{1} }} }}{{2\left( {A^{2} - 8k\delta } \right)}}, $$
(A4)
$$ {\upomega }_{{R_{1} }}^{{MT^{*} }} = \frac{{\delta \left( {A^{2} - 4k\delta - 4kC_{{R_{1} }} } \right)}}{{A^{2} - 8k\delta }}, $$
(A5)
$$ {\uptau }^{{MT^{*} }} = \frac{{A\left( {\delta - C_{{R_{1} }} } \right)}}{{A^{2} - 8k\delta }}. $$
(A6)

Substituting (A2) and (A3) into (A1) we can obtain

$$ p_{N}^{{MT^{*} }} = \frac{{ - 24k\delta + A^{2} \left( {3 + \delta } \right) + \left( {A^{2} - 8k\delta } \right)C_{N} - A^{2} C_{{R_{1} }} }}{{4\left( {A^{2} - 8k\delta } \right)}}, $$
(A7)
$$ p_{{R_{1} }}^{{MT^{*} }} = \frac{{\delta \left( {A^{2} - 6k\delta - 2kC_{{R_{1} }} } \right)}}{{A^{2} - 8k\delta }}. $$
(A8)

Therefore, the optimal profits of the alliance and the retailer are further obtained as follows:

$$ {\Pi }_{L}^{{MT^{*} }} = \frac{{\left( {L_{1} \left( {A^{2} L_{1} + 8L_{2} } \right) + \left( {A^{2} - 8L_{2} } \right)C_{N}^{2} + 2\left( {A^{2} - 8L_{2} } \right)C_{N} \left( {L_{1} - C_{{R_{1} }} } \right) - 2A^{2} L_{1} C_{{R_{1} }} + \left( {A^{2} - 8k} \right)C_{{R_{1} }}^{2} } \right)}}{{\left( {8L_{1} \left( { - A^{2} + 8L_{2} } \right)} \right)}}, $$
(A9)
$$ {\Pi }_{r}^{{MT^{*} }} = \frac{{\left( {A^{2} L_{1} \left( {A^{2} - 16L_{2} } \right)\left( {L_{1} - 2C_{{R_{1} }} } \right) + 64L_{2}^{2} + \left( {A^{2} - 8L_{2} } \right)^{2} C_{N} \left( {2L_{1} + C_{N} - 2C_{{R_{1} }} } \right) + \left( {A^{4} - 16L_{2} \left( {A^{2} - 4k} \right)} \right)C_{{R_{1} }}^{2} } \right)}}{{ - 16L_{1} \left( {A^{2} - 8L_{2} } \right)^{2} }}, $$
(A10)

where \(L_{1} = \delta - 1;{ }L_{2} = k\delta ;{ }L_{3} = A - B;{ }L = - AB + B^{2} + 4k\delta\).

1.1.2 The solving process of model RT

From assumption 4 we can see that the retailer is the follower of the game in any model, so the reaction function of the retailer is the same as 3.1, i.e.

$$ \left\{ {\begin{array}{*{20}c} {p_{N} = \frac{{1 + {\upomega }_{N} }}{2}} \\ {p_{{R_{2} }} = \frac{{\delta + {\upomega }_{{R_{2} }} }}{2}} \\ \end{array} } \right. $$
(A11)

It is easy to obtain the Hessian matrix of (11):

$$ H_{L}^{RT} = \left[ {\begin{array}{*{20}c} {\frac{1}{{\left( { - 1 + \delta } \right)\delta }}} & {\frac{A}{2\delta }} \\ {\frac{A}{2\delta }} & { - 2k} \\ \end{array} } \right] $$
(A12)

For \({ }\frac{1}{{\left( { - 1 + \delta } \right)\delta }} < 0\), if \({ } \left| {H_{L}^{RT} } \right| = \left| {\begin{array}{*{20}c} {\frac{1}{{\left( { - 1 + \delta } \right)\delta }}} & {\frac{A}{2\delta }} \\ {\frac{A}{2\delta }} & { - 2k} \\ \end{array} } \right| = \frac{{A^{2} - A^{2} \delta - 8k\delta }}{{4\delta^{2} \left( { - 1 + \delta } \right)}} > 0\), that is to say \(A^{2} - A^{2} \delta - 8k\delta < 0\) is satisfied. So the Hessian matrix is negatively definite, and taking the first-order derivative of \({\Pi }_{L}^{RT}\) with respect to \({\upomega }_{{R_{2} }}\) and \({ }\tau\), we can obtain the unique optimal solution of \({\Pi }_{L}^{RT}\) with respect to \({\upomega }_{{R_{2} }}\) and \({ }\tau\).

Then, we can derive the following equilibrium solution by using the reverse recursion method.

$$ {\upomega }_{{R_{2} }} = \frac{{\delta \left( {A^{2} \left( { - 1 + \delta } \right) + 2k\left( {C_{{R_{2} }} + \delta {\upomega }_{N} } \right)} \right)}}{{A^{2} \left( { - 1 + \delta } \right) + 4k\delta }} $$
(A13)
$$ \tau = \frac{{A\left( {C_{{R_{2} }} + \delta \left( { - 2 + {\upomega }_{N} } \right)} \right)}}{{A^{2} \left( { - 1 + \delta } \right) + 4k\delta }} $$
(A14)

Similarly, since the profit function of the original manufacturer is

$$ {\Pi }_{M}^{RT} = \left( {{\upomega }_{N} - C_{N} } \right)q_{N} $$
(A15)

We have

$$ {\upomega }_{N}^{{RT^{*} }} = \frac{{\left( { - 1 + \delta } \right)\left( {A^{2} - 8k\delta } \right) + \left( {A^{2} \left( { - 1 + \delta } \right) + 8k\delta } \right)C_{N} + 4k\delta C_{{R_{2} }} }}{{2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta }} $$
(A16)
$$ {\upomega }_{{R_{2} }}^{{RT^{*} }} = \frac{{\delta \left( {\left( { - 1 + \delta } \right)\left( {A^{2} - 2k\delta } \right) + 2k\delta C_{N} + 4kC_{{R_{2} }} } \right)}}{{A^{2} \left( { - 1 + \delta } \right) - 2k\left( { - 4 + \delta } \right)\delta }} $$
(A17)
$$ {\uptau }^{{RT^{*} }} = \frac{{A\left( {\delta \left( { - 3 + C_{N} } \right) + 2C_{{R_{2} }} } \right)}}{{2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta }} $$
(A18)
$$ p_{N}^{{RT^{*} }} = \frac{{3A^{2} \left( { - 1 + \delta } \right) - 12k\left( { - 2 + \delta } \right)\delta + \left( {A^{2} \left( { - 1 + \delta } \right) + 8k\delta } \right)C_{N} + 4k\delta C_{{R_{2} }} }}{{4A^{2} \left( { - 1 + \delta } \right) - 8k\left( { - 4 + \delta } \right)\delta }} $$
(A19)
$$ p_{{R_{2} }}^{{RT^{*} }} = \frac{{\delta \left( {2A^{2} \left( { - 1 + \delta } \right) + k\left( {13 - 4\delta } \right)\delta + k\delta C_{N} + 2kC_{{R_{2} }} } \right)}}{{2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta }} $$
(A20)

Thus, we can further obtain the optimal profits of the retailer, alliance and original manufacturer as follows:

$${\Pi }_{\mathrm{r}}^{{\mathrm{RT}}^{*}}=\frac{\begin{array}{c}-(({\mathrm{L}}_{1}({\mathrm{A}}^{4}{\mathrm{L}}_{1}(1+8\delta )+16{{\mathrm{L}}_{2}\mathrm{A}}^{2}(1+(4-5\delta )\delta )+16{{\mathrm{L}}_{2}}^{2}(-4+\delta (-13+8\delta )))+\\ ({\mathrm{A}}^{4}{{\mathrm{L}}_{1}}^{2}+16{{\mathrm{L}}_{2}}^{2}(4+5\delta )+8{\mathrm{A}}^{2}{\mathrm{L}}_{2}({\mathrm{L}}_{1}(\delta +1)){\mathrm{C}}_{\mathrm{N}}^{2}+8{\mathrm{L}}_{2}{\mathrm{C}}_{{\mathrm{R}}_{2}}(({\mathrm{L}}_{1}(-4{\mathrm{L}}_{2}(2+\delta )\\ +{\mathrm{A}}^{2}(5+4\delta ))+(8k+10{\mathrm{L}}_{2}){\mathrm{C}}_{{\mathrm{R}}_{2}})+\\ 2{\mathrm{C}}_{\mathrm{N}}({\mathrm{L}}_{1}({{16\mathrm{L}}_{2}}^{2}(4-7\delta )+{\mathrm{A}}^{4}{\mathrm{L}}_{1}(3+4{\mathrm{L}}_{1})-4{\mathrm{A}}^{2}{\mathrm{L}}_{2}(4+\delta (-13+2{\mathrm{L}}_{1})))\\ +4{\mathrm{L}}_{2}(3{\mathrm{A}}^{2}{\mathrm{L}}_{1}+4{\mathrm{L}}_{2}(8+\delta )){\mathrm{C}}_{{\mathrm{R}}_{2}}))\end{array}}{16{\mathrm{L}}_{1}{({\mathrm{A}}^{2}{\mathrm{L}}_{1}-2\mathrm{k}(-4+\updelta )\updelta )}^{2}},$$
(A21)
$${\Pi }_{L}^{{RT}^{*}}=\frac{\begin{array}{c}(\delta ({A}^{4}(-1+{C}_{N}){{L}_{1}}^{2}-8{{L}_{2}}^{2}({C}_{N}-{L}_{1})(-7+{C}_{N}+\delta )-{A}^{2}{L}_{1}{L}_{2}(1+{C}_{N}^{2}+2{C}_{N}(-7+\delta )+2\delta ))+\\ {C}_{{R}_{2}}({A}^{4}(-1+B){{L}_{1}}^{2}-2{A}^{2}{L}_{1}{L}_{2}(10+{C}_{N}(-6+\delta )-\delta )-\\ 16{{L}_{2}}^{2}(-3+{C}_{N})(-2+\delta )+4k({A}^{2}{{L}_{1}}^{2}-2{L}_{2}{(-2+\delta )}^{2}){C}_{{R}_{2}}))\end{array}}{(4{L}_{1}{({A}^{2}{L}_{1}-2{L}_{2}(-4+\delta ))}^{2})},$$
(A22)
$$ {\Pi }_{M}^{{RT^{*} }} = \frac{{\begin{array}{*{20}c} {\left( {\left( {A^{2} \left( {1 + \left( {3 - 4\delta } \right)\delta } \right) + 8L_{2} \left( { - 1 + \left( { - 3 + \delta } \right)\delta } \right) + \left( {A^{2} L_{1} - 4L_{2} \left( { - 2 + \delta } \right)} \right)C_{N} - 4L_{2} C_{{R_{2} }} } \right)} \right.\left( {L_{1} \left( {A^{2} - 8L_{2} } \right) + } \right.} \\ {\left. {\left. {\left( { - A^{2} L_{1} + 4L_{2} \left( { - 2 + \delta } \right)} \right)C_{N} + 4L_{2} C_{{R_{2} }} } \right)} \right)} \\ \end{array} }}{{\left( {8L_{1} \left( {A^{2} L_{1} - 2L_{2} \left( { - 4 + \delta } \right)} \right)^{2} } \right)}}. $$
(A23)

1.1.3 The solving process of Model MR

From assumption 4 we can see that the retailer is the follower of the game in any model, so the reaction function of the retailer is the same. i.e.

$$ \left\{ {\begin{array}{*{20}c} {p_{N} = \frac{{1 + {\upomega }_{N} }}{2}} \\ {p_{{R_{3} }} = \frac{{\delta + {\upomega }_{{R_{3} }} }}{2}} \\ \end{array} } \right.. $$
(A24)

It is easy to obtain the Hessian matrix of (18):

$$ H_{L}^{MR} = \left[ {\begin{array}{*{20}c} {\frac{1}{{\left( { - 1 + \delta } \right)}}} & {\frac{1}{1 - \delta }} \\ {\frac{1}{1 - \delta }} & {\frac{1}{{\left( { - 1 + \delta } \right)\delta }}} \\ \end{array} } \right] $$
(A25)

For \({ }\frac{1}{{\left( { - 1 + \delta } \right)}} < 0\), if \( \left| {H_{L}^{MR} } \right| = \frac{1}{{\left( {1 - \delta } \right)\delta }} > 0\), that is to say 0 < δ < 1 is satisfied, so the matrix is negatively definite, \({\Pi }_{L}^{MR}\) is jointly concave with respect to \({\upomega }_{N}\) and \({\upomega }_{{R_{3} }}\), and there is unique optimal solution of \({\Pi }_{L}^{MR}\) with respect to \({\upomega }_{N}\) and \({\upomega }_{{R_{3} }}\).

Then, we can derive the following equilibrium solution by using the reverse recursion method.

$$ {\upomega }_{N}^{{MR^{*} }} = \frac{{ - 4k\delta + AB\left( {1 + \delta } \right) - B^{2} \left( {1 + \delta } \right) + \left( {\left( {A - B} \right)B - 4k\delta } \right)C_{N} + b\left( { - A + B} \right)C_{{R_{3} }} }}{{2\left( {A - B} \right)B - 8k\delta }}, $$
(A26)
$$ {\upomega }_{{R_{3} }}^{{MR^{*} }} = \frac{{\delta \left( { - AB + B^{2} + 2k\delta + 2kC_{{R_{3} }} } \right)}}{{ - AB + B^{2} + 4k\delta }}, $$
(A27)
$$ \tau^{{MR^{*} }} = \frac{{\left( {B - A} \right)\left( {C_{{R_{3} }} - \delta } \right)}}{{2\left( {B - A} \right)B + 8k\delta }}, $$
(A28)
$$ p_{N}^{{MR^{*} }} = \frac{{ - 12k\delta + AB\left( {3 + \delta } \right) - B^{2} \left( {3 + \delta } \right) + \left( {\left( {A - B} \right)B - 4k\delta } \right)C_{N} + b\left( { - A + B} \right)C_{{R_{3} }} }}{{4AB - 4\left( {B^{2} + 4k\delta } \right)}}, $$
(A29)
$$ p_{{R_{3} }}^{{MR^{*} }} = \frac{{\delta \left( { - AB + B^{2} + 3k\delta + kC_{{R_{3} }} } \right)}}{{ - AB + B^{2} + 4k\delta }}. $$
(A30)

Thus, we can further obtain the following optimal profits of the retailer, third-party recycling platform and alliance.

$$ {\Pi }_{r}^{{MR^{*} }} = \frac{{\begin{array}{*{20}c} {(32L_{2}^{2} \left( {\delta - C_{{R_{3} }} } \right)\left( {L_{3} BL_{1} + \left( {L_{3} B - 8L_{2} } \right)C_{N} + \left( { - BL_{3} + 8k} \right)C_{{R_{3} }} } \right) + } \\ {\left( {L + 4L_{2} } \right)\left( {L_{1} + C_{N} - C_{{R_{3} }} } \right)(L_{3}^{2} B^{2} - L_{3} B\left( {L_{3} B + 12k} \right)\delta + 4L_{2} \left( {3L_{3} B + 8k} \right)\delta } \\ { - \left( {L + 4L_{2} } \right)LC_{N} - L_{3} B\left( {L + 8L_{2} } \right)C_{{R_{3} }} ))} \\ \end{array} }}{{16L_{1} L\left( {L + 4L_{2} } \right)^{2} }}. $$
(A31)
$$ {\Pi }_{T}^{{MR^{*} }} = \frac{{\left( {A - B} \right)^{2} k\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{4\left( { - AB + B^{2} + 4k\delta } \right)^{2} }}, $$
(A32)
$${\Pi }_{L}^{{MR}^{*}}=\frac{\begin{array}{c}(\delta (L+4k{C}_{{R}_{3}})({L}_{1}(20{L}_{2}-12{{L}_{3}}^{2}-64{{L}_{2}}^{2}{L}_{3}B\left({L}_{1}-1\right)+256{{L}_{2}}^{3})+(L{\left(L+4{L}_{2}\right)}^{2}{C}_{N}^{2}-2L{\left(L+4{L}_{2}\right)}^{2}\\ {C}_{N}({L}_{1}-{C}_{{R}_{3}})-2{L}_{3}B{L}_{1}({{L}_{3}}^{2}{B}^{2}-12B{L}_{3}{L}_{2}+64{{L}_{2}}^{2}){C}_{{R}_{3}}+({{L}_{3}}^{2}{B}^{2}({L}_{3}B-8k)-\\ 4{L}_{3}B(3{L}_{3}B-16k){L}_{2}+64({L}_{3}B-4k){{L}_{2}}^{2}){{C}_{{R}_{3}}}^{2}))\end{array}}{8{L}_{1}L{(L+4{L}_{2})}^{3}}.$$
(A33)

1.1.4 The solving process of model MRT

The solving process is similar to that of Model MR and we omit it here.

1.2 Appendix 2: the proofs of the lemmas and propositions in this paper

Proof of Proposition 1

Taking the first-order derivatives of \({\uptau }^{{MT^{*} }} \) with respect to A and \(C_{{R_{1} }}\) for model MT, we obtain \(\frac{{\partial {\uptau }^{{MT^{*} }} }}{\partial A} = \frac{{\left( {A^{2} + 8k\delta } \right)\left( {C_{{R_{1} }} - \delta } \right)}}{{\left( {A^{2} - 8k\delta } \right)^{2} }} > 0\) and \(\frac{{\partial {\uptau }^{{MT^{*} }} }}{{\partial C_{{R_{1} }} }} = \frac{ - A}{{A^{2} - 8k\delta }} > 0\).

Proof of Proposition 2

Taking the first-order and second-order derivatives of \({\Pi }_{L}^{{MT^{*} }}\) and \({\Pi }_{R}^{{MT^{*} }}\) with respect to \(A\) for model MT, we have

$$ \frac{{\partial {\Pi }_{L}^{MT} }}{{\partial {\text{A}}}} = \frac{{2Ak\left( {\delta - C_{{R_{1} }} } \right)^{2} }}{{\left( {A^{2} - 8k\delta } \right)^{2} }} > 0, $$
(A34)
$$ \frac{{\partial^{2} {\Pi }_{L}^{MT} }}{{\partial {\text{A}}^{2} }} = - \frac{{2k\left( {3A^{2} + 8k\delta } \right)\left( {\delta - C_{{R_{1} }} } \right)^{2} }}{{\left( {A^{2} - 8k\delta } \right)^{3} }} > 0, $$
(A35)
$$ \frac{{\partial {\Pi }_{R}^{MT} }}{{\partial {\text{A}}}} = - \frac{{16Ak^{2} \delta \left( {\delta - C_{{R_{1} }} } \right)^{2} }}{{\left( {A^{2} - 8k\delta } \right)^{3} }} > 0, $$
(A36)
$$ \frac{{\partial^{2} {\Pi }_{R}^{MT} }}{{\partial {\text{A}}^{2} }} = \frac{{16k^{2} \delta \left( {5A^{2} + 8k\delta } \right)\left( {\delta - C_{{R_{1} }} } \right)^{2} }}{{\left( {A^{2} - 8k\delta } \right)^{4} }} > 0. $$
(A37)

Proof of Proposition 3

Taking the first-order derivative of \(\tau^{{RT^{*} }}\) with respect to A for model RT, we derive.

\(\frac{{\partial \tau^{{RT^{*} }} }}{{\partial {\text{A}}}} = - \frac{{\left( {A^{2} \left( { - 1 + \delta } \right) + 2k\left( { - 4 + \delta } \right)\delta } \right)\left( {\delta \left( { - 3 + C_{N} } \right) + 2C_{{R_{2} }} } \right)}}{{2\left( {A^{2} \left( { - 1 + \delta } \right) - 2k\left( { - 4 + \delta } \right)\delta } \right)^{2} }}\) and \({\uptau }^{{RT^{*} }} = \frac{{A\left( {\delta \left( { - 3 + C_{N} } \right) + 2C_{{R_{2} }} } \right)}}{{2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta }}\) > 0.

Let \( g\left( \delta \right)\) = \(A\left( {\delta \left( { - 3 + C_{N} } \right) + 2C_{{R_{2} }} } \right)\), \(\frac{dg\left( \delta \right)}{{d\delta }} = \left( { - 3 + C_{N} } \right)A\), if \(- 3 + C_{N} > 0\), \(g\left( \delta \right)\) increases with \(\delta\), \({\text{so }}g\left( \delta \right) > g\left( 0 \right) = 2AC_{{R_{2} }} > 0\);

If \(- 3 + C_{N} < 0\),\({ }g\left( \delta \right)\) decreases with \(\delta\), so \(g\left( \delta \right) > g\left( 1 \right) = A\left( { - 3 + C_{N} + 2C_{{R_{2} }} } \right);{ } - 3 + C_{N} + 2C_{{R_{2} }} > 3\left( {C_{{R_{2} }} - 1} \right)\), at this time \(\delta = 1\), according to Assumption 1, \({ }C_{{R_{2} }} > 1\); thus \(g\left( \delta \right) > g\left( 1 \right) > 0\), so we have \(- \left( {A^{2} \left( { - 1 + \delta } \right) + 2k\left( { - 4 + \delta } \right)\delta } \right)\left( {\delta \left( { - 3 + C_{N} } \right) + 2C_{{R_{2} }} } \right) > 0\), which leads to \(\frac{{\partial \tau^{{RT^{*} }} }}{{\partial {\text{A}}}} > 0\).

Taking the second-order derivative of \(\tau^{{RT^{*} }}\) with respect to A for model RT, we derive

$$ \frac{{\partial^{2} \tau^{{RT^{*} }} }}{{\partial {\text{A}}^{2} }} = \frac{{A\left( { - 1 + \delta } \right)\left( {A^{2} \left( { - 1 + \delta } \right) + 6k\left( { - 4 + \delta } \right)\delta } \right)\left( {\delta \left( { - 3 + C_{N} } \right) + 2C_{{R_{2} }} } \right)}}{{\left( {A^{2} \left( { - 1 + \delta } \right) - 2k\left( { - 4 + \delta } \right)\delta } \right)^{3} }} > 0, $$
(A38)

and taking the first-order derivatives of \(\tau^{{RT^{*} }}\) with respect to \(C_{N} , C_{{R_{2} }} {\text{for model RT}} \), we get

$$ \frac{{\partial {\uptau }^{{RT^{*} }} }}{{\partial C_{N} }} = \frac{A\delta }{{2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta }} > 0, $$
(A39)
$$ \frac{{\partial {\uptau }^{{RT^{*} }} }}{{\partial C_{{R_{2} }} }} = \frac{2A}{{2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta }} > 0. $$
(A40)

Thus, from \(0 \le \delta \le 1\), we have \(\frac{{\partial {\uptau }^{{RT^{*} }} }}{{\partial C_{{R_{2} }} }} > \frac{{\partial {\uptau }^{{RT^{*} }} }}{{\partial C_{N} }}\).

Proof of Proposition 4

Taking the first-order derivative of \(\tau^{{MR^{*} }}\) with respect to A for model MR, we derive.

$$ \frac{{\partial \tau^{{MR^{*} }} }}{{\partial {\text{A}}}} = \frac{{2k\delta \left( { - \delta + C_{{R_{3} }} } \right)}}{{\left( { - AB + B^{2} + 4k\delta } \right)^{2} }} > 0. $$
(A41)

And taking the second-order derivative of \(\tau^{{MR^{*} }}\) with respect to A for model MR, we get

$$ \frac{{\partial^{2} \tau^{{MR^{*} }} }}{{\partial {\text{A}}^{2} }} = - \frac{{4Bk\delta \left( { - \delta + C_{{R_{3} }} } \right)}}{{\left( {B\left( { - A + B} \right) + 4k\delta } \right)^{3} }} < 0. $$
(A42)

Proof of Proposition 5

Taking the first-order derivative of \(\tau^{{RT^{*} }}\) with respect to A for model MRT, we obtain.

$$ \frac{{\partial {\uptau }^{{MRT^{*} }} }}{\partial A} = \frac{{\left( {A^{2} + 8k\delta } \right)\left( {C_{{R_{4} }} - \delta } \right)}}{{\left( {A^{2} - 8k\delta } \right)^{2} }} > 0, $$
(A43)

and from \(C_{{R_{4} }} < C_{{R_{1} }}\), we have \(\frac{{\partial {\uptau }^{{MRT^{*} }} }}{\partial A} < \frac{{\partial {\uptau }^{{MT^{*} }} }}{\partial A}{ };{ }\) then, taking the first-order derivative of \(\tau^{{MRT^{*} }}\) with respect to \(C_{{R_{4} }}\) for model MRT, we derive

$$ \frac{{\partial {\uptau }^{{MRT^{*} }} }}{{\partial C_{{R_{4} }} }} = \frac{ - A}{{A^{2} - 8k\delta }} > 0. $$
(A44)

Proof of Theorem 1

Form \( \uptau ^{{MRT^{*} }} = \frac{{A\left( {\delta - C_{{R_{4} }} } \right)}}{{A^{2} - 8k\delta }}, \uptau ^{{MT^{*} }} = \frac{{A\left( {\delta - C_{{R_{1} }} } \right)}}{{A^{2} - 8k\delta }}\), \({\uptau }^{{MRT^{*} }} - {\uptau }^{{MT^{*} }} = \frac{{A\left( {C_{{R_{1} }} - C_{{R_{4} }} } \right)}}{{A^{2} - 8k\delta }}\), according to Assumption 1, we have \(C_{{R_{1} }} > C_{{R_{4} }}\), so \({\uptau }^{{MRT^{*} }} - {\uptau }^{{MT^{*} }} < 0\), i.e. \({\uptau }^{{MRT^{*} }} < {\uptau }^{{MT^{*} }}\).

Since \({\uptau }^{{MT^{*} }} = \frac{{A\left( {\delta - C_{{R_{1} }} } \right)}}{{A^{2} - 8k\delta }}\) and \({\uptau }^{{RT^{*} }} = \frac{{A\left( {\delta \left( { - 3 + C_{N} } \right) + 2C_{{R_{2} }} } \right)}}{{2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta }}\), then,\({\uptau }^{{MT^{*} }} - {\uptau }^{{RT^{*} }} = \frac{{ - A\left( {A^{2} - 8k\delta } \right)\left( {2C_{{R_{2} }} + \delta \left( { - 3 + C_{N} } \right)} \right) + 2A\left( {A^{2} \left( { - 1 + \delta } \right) - 2k\delta \left( { - 4 + \delta } \right)} \right)\left( {\delta - C_{{R_{1} }} } \right)}}{{\left( {A^{2} - 8k\delta } \right)\left( {2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta } \right)}}\). To make the recycling rate meaningful, it must be met \({ }A^{2} - 8k\delta < 0\),\( 2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta > 0\), thus, we can obtain \(A^{2} \left( { - 1 + \delta } \right) > 2k\delta \left( { - 4 + \delta } \right)\).

From \(- A\left( {A^{2} - 8k\delta } \right)\left( {2C_{{R_{2} }} + \delta \left( { - 3 + C_{N} } \right)} \right) + 2A\left( {A^{2} \left( { - 1 + \delta } \right) - 2k\delta \left( { - 4 + \delta } \right)} \right)\left( {\delta - C_{{R_{1} }} } \right) = - A\left( {A^{2} - 8k\delta } \right)\delta \left( { - 3 + C_{N} } \right) - 2A\left( {A^{2} - 8k\delta } \right)C_{{R_{2} }} + 2A\delta \left( {A^{2} \left( { - 1 + \delta } \right) - 2k\delta \left( { - 4 + \delta } \right)} \right) - 2A\left( {A^{2} \left( { - 1 + \delta } \right) - 2k\delta \left( { - 4 + \delta } \right)} \right)C_{{R_{1} }}\), we have \(- A\left( {A^{2} - 8k\delta } \right)\delta \left( { - 3 + C_{N} } \right) > 0, 2A\delta \left( {A^{2} \left( { - 1 + \delta } \right) - 2k\delta \left( { - 4 + \delta } \right)} \right) > 0\).

Let \(f\left( \delta \right) = - 2A\left( {A^{2} - 8k\delta } \right)C_{{R_{2} }} - 2A\left( {A^{2} \left( { - 1 + \delta } \right) - 2k\delta \left( { - 4 + \delta } \right)} \right)C_{{R_{1} }}\), and \(\frac{{{\text{d}}^{2} f\left( \delta \right)}}{{{\text{d}}\delta^{2} }} = 8Ak > 0, \) so \(f\left( \delta \right)\) is convex with respect to \(\delta\). Therefore, we can obtain \(f\left( \delta \right){ }\) achieves the minimum value in \(\delta^{*} = \frac{{A^{2} C_{R} + 8kC_{{R_{1} }} - 8kC_{{{\text{R}}2}} }}{{4kC_{{R_{1} }} }}{ },{ }and{ }f_{min} = f\left( {\delta^{*} } \right) = \left( { - A^{2} + \frac{{A^{4} }}{8k} + 8k} \right)C_{{R_{1} }} + \left( {A^{2} + 16k} \right)C_{R2} - \frac{{8kC_{R2}^{2} }}{{C_{{R_{1} }} }}.\)

From \( A^{2} - 8k\delta < 0\), \(0 < \delta < 1\), we have \(8k > A^{2}\); similarly, from \( C_{{R_{1} }} > C_{{{\text{R}}2}}\), we have \(\frac{{8kC_{{{\text{R}}2}}^{2} }}{{C_{{R_{1} }} }} < 8kC_{{{\text{R}}2}}\) and \(f_{min} > 0\), thus \(f\left( \delta \right) > 0\), which leads to \({\uptau }^{{MT^{*} }} < {\uptau }^{{RT^{*} }}\).

Since \(\tau^{{MR^{*} }} = \frac{{\left( {B - A} \right)\left( {\delta - C_{{R_{3} }} } \right)}}{{2\left( {A - B} \right)B - 8k\delta }}\),\( \uptau ^{{RT^{*} }} = \frac{{A\left( {\delta \left( { - 3 + C_{N} } \right) + 2C_{{R_{2} }} } \right)}}{{2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta }}\), if \({\uptau }^{{RT^{*} }} - \tau^{{MR^{*} }} = 0\) we can obtain a threshold value \(A_{1}^{*}\)(\(A_{1}^{*}\) is a real root of \({\uptau }^{{RT^{*} }} = \tau^{{MR^{*} }}\), and \(A_{1}^{*} < B)\); besides, if \(A > A_{1}^{*}\), we have \({\uptau }^{{RT^{*} }} > \tau^{{MR^{*} }}\), otherwise, \({\uptau }^{{RT^{*} }} < \tau^{{MR^{*} }}\).

From \(\tau^{{MR^{*} }} = \frac{{\left( {B - A} \right)\left( {\delta - C_{{R_{3} }} } \right)}}{{2\left( {A - B} \right)B - 8k\delta }}\); \({\uptau }^{{MT^{*} }} = \frac{{A\left( {\delta - C_{{R_{1} }} } \right)}}{{A^{2} - 8k\delta }}\), if \(\tau^{{MR^{*} }} - {\uptau }^{{MT^{*} }} = 0\) we can obtain another threshold value \(A_{2}^{*} { }(A_{2}^{*}\) is a real value of \(\tau^{{MR^{*} }} = {\uptau }^{{MT^{*} }}\), and \(A_{1}^{*} < A_{2}^{*} < B){ }\); however, if \(A > A_{2}^{*}\), we have \({\uptau }^{{MT^{*} }} > \tau^{{MR^{*} }}\), otherwise, \({\uptau }^{{MT^{*} }} < \tau^{{MR^{*} }}\).

Since \(\tau^{{MR^{*} }} = \frac{{\left( {B - A} \right)\left( {\delta - C_{{R_{3} }} } \right)}}{{2\left( {A - B} \right)B - 8k\delta }}\); \({\uptau }^{{MRT^{*} }} = \frac{{A\left( {\delta - C_{{R_{4} }} } \right)}}{{A^{2} - 8k\delta }}\), if \(\tau^{{MR^{*} }} - {\uptau }^{{MRT^{*} }} = 0\) we can obtain a threshold value \(A_{3}^{*} { }(A_{3}^{*} is a real root of \tau^{{MR^{*} }} = {\uptau }^{{MRT^{*} }}\), and \(A_{1}^{*} < A_{2}^{*} < A_{3}^{*} < B){ }\); but if \(A > A_{3}^{*}\), we can obtain \(\tau^{{MR^{*} }} < {\uptau }^{{MRT^{*} }}\), otherwise, \(\tau^{{MR^{*} }} > {\uptau }^{{MRT^{*} }}\).

Proof of Theorem 2

From \(p_{N}^{{MT^{*} }} - p_{N}^{{MR^{*} }} = \frac{{k\delta \left( {\left( {b - A} \right)^{2} + B^{2} } \right)\left( {C_{{R_{3} }} - C_{{R_{1} }} - \delta } \right)}}{{4\left( {A^{2} - 8k\delta } \right)\left( {4k\delta + B^{2} - AB} \right)}} > 0,\) we have \(p_{N}^{{MT^{*} }} > p_{N}^{{MR^{*} }}\).

According to Assumption 1, since \(C_{{R_{2} }} < C_{{R_{1} }}\), we derive \(\overline{{p_{N}^{{RT^{*} }} }}\) through increasing \(C_{{R_{2} }}\) to \(C_{{R_{1} }}\), thus, \(p_{N}^{{MT^{*} }} - p_{N}^{{RT^{*} }} > p_{N}^{{MT^{*} }} - \overline{{p_{N}^{{RT^{*} }} }} .\) Then, we compare \(p_{N}^{{MT^{*} }}\) and \(\overline{{p_{N}^{{RT^{*} }} }}\).

$$ p_{N}^{{MT^{*} }} - \overline{{p_{N}^{{RT^{*} }} }} = \frac{{4\left( {A^{2} \left( { - 1 + \delta } \right) - 2k\left( { - 4 + \delta } \right)\delta } \right)\left( {A^{2} \left( { - 1 + \delta } \right) + 8k\delta + \left( {A^{2} - 8k\delta } \right)C_{N} - A^{2} C_{{R_{1} }} } \right)}}{{4\left( {A^{2} - 8k\delta } \right)\left( {4A^{2} \left( { - 1 + \delta } \right) - 8k\left( { - 4 + \delta } \right)\delta } \right)}} > 0. $$
(A45)

Therefore, \(p_{N}^{{MT^{*} }} - p_{N}^{{RT^{*} }} > p_{N}^{{MT^{*} }} - \overline{{p_{N}^{{RT^{*} }} }} > 0\), i.e. \(p_{N}^{{MT^{*} }} - p_{N}^{{RT^{*} }} > 0.\)

According to Assumption 1, from \( C_{{R_{4} }} < C_{{R_{1} }}\), we have \(p_{N}^{{MT^{*} }} - p_{N}^{{MRT^{*} }} = \frac{{A^{2} \left( {C_{{R_{4} }} - C_{{R_{1} }} } \right)}}{{4\left( {A^{2} - 8k\delta } \right)}} > 0\).

Proof of Theorem 3

From \(p_{{R_{4} }}^{{MRT^{*} }} - p_{{R_{3} }}^{{MR^{*} }} = \frac{{\left( {A^{2} - 2AB + 2B^{2} } \right)k\delta \left( {\delta - C_{{R_{4} }} } \right)}}{{\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)}} > 0\), we have \(p_{{R_{4} }}^{{MRT^{*} }} > p_{{R_{3} }}^{{MR^{*} }}\).

According to Assumption 1 and \(C_{{R_{2} }} < C_{{R_{1} }}\), we derive \(p_{{R_{1} }}^{{MT^{*} }} - p_{{R_{2} }}^{{RT^{*} }} > p_{N}^{{MT^{*} }} - \overline{{p_{{R_{2} }}^{{RT^{*} }} }}\) and \({ }p_{{R_{1} }}^{{MT^{*} }} - \overline{{p_{{R_{2} }}^{{RT^{*} }} }} = \frac{{\delta \left( { - A^{4} \left( { - 1 + \delta } \right) + 4k^{2} \left( {14 - 5\delta } \right)\delta^{2} + 3A^{2} k\delta \left( { - 5 + 4\delta } \right) + k\delta \left( { - \left( {A^{2} - 8k\delta } \right)C_{N} - 2\left( {A^{2} - 2k\delta } \right)C_{{R_{1} }} } \right)} \right)}}{{\left( {A^{2} - 8k\delta } \right)\left( {2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta } \right)}}\). According to Assumption 3, we have \(A^{2} - 8k\delta < 0\),\( 2A^{2} \left( { - 1 + \delta } \right) - 4k\left( { - 4 + \delta } \right)\delta > 0\), so \(\frac{{2k\delta \left( {\delta - 4} \right)}}{\delta - 1} < A^{2} \left\langle {8k\delta which leads to { }p_{{R_{1} }}^{{MT^{*} }} - \overline{{p_{{R_{2} }}^{{RT^{*} }} }} } \right\rangle 0\), thus, \(p_{{R_{1} }}^{{MT^{*} }} > p_{{R_{2} }}^{{RT^{*} }}\).

According to Assumption 1, from \(C_{{R_{4} }} < C_{{R_{1} }}\) and \(p_{{R_{1} }}^{{MT^{*} }} - p_{{R_{4} }}^{{MRT^{*} }} = \frac{{2k\delta \left( {C_{{R_{4} }} - C_{{R_{1} }} } \right)}}{{\left( {A^{2} - 8k\delta } \right)}} > 0\), it is easy to obtain \( p_{{R_{1} }}^{{MT^{*} }} > p_{{R_{4} }}^{{MRT^{*} }}\).

Proof of Theorem 4

From \({\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{L}^{{MT^{*} }} = \frac{{2\left( {A^{2} - 8L_{2} } \right)C_{N} \left( {C_{{R_{1} }} - C_{{R_{4} }} } \right) + 2A^{2} L_{1} \left( {C_{{R_{1} }} - C_{{R_{4} }} } \right) + \left( {A^{2} - 8k} \right)\left( {C_{{R_{1} }}^{2} - C_{{R_{4} }}^{2} } \right)}}{{8L_{1} - A^{2} + 8L_{2} }}0\), \(C_{{R_{1} }} > C_{{R_{4} }}\), \(L_{1} = \delta - 1\) and \(L_{2} = k\delta\), we obtain \(\Pi_{L}^{{MRT^{*} }} > \Pi_{L}^{{MT^{*} }}\)

From \({\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{L}^{{MR^{*} }} = \frac{{k\left( {\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)^{2} }}\), \(A^{2} - 8k\delta < 0\),\( A < B\) and \( 3A^{2} - 2AB + 2B^{2} = 2A^{2} + B^{2} + \left( {A - B} \right)^{2} > 0, \) we can obtain \(\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta \left\langle {0 ,{\text{when}} \left( {A^{2} + 2AB - 2B^{2} } \right)} \right\rangle 0\); otherwise, if \(\left( {A^{2} + 2AB - 2B^{2} } \right) < 0\) and \(A\left\langle {\left( {\sqrt 3 - 1} \right)B, {\text{thus}} , - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k} \right\rangle 0\). Let \(T\left( A \right) = \left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta\) and \(\frac{dT\left( A \right)}{{dA}} = 6A\left( {A - B} \right)B + B\left( {3A^{2} - 2{\text{AB}} + 2B^{2} } \right) - 8Ak\delta\), we obtain two real roots of \(\frac{dT\left( A \right)}{{dA}} = 0{ }\): \(A_{1} = \frac{{8B^{2} + 8k\delta - \sqrt { - 72B^{4} + \left( {8B^{2} - 8k\delta } \right)^{2} } }}{18B}\) and \( A_{2} = \frac{{8B^{2} + 8k\delta + \sqrt { - 72B^{4} + \left( {8B^{2} - 8k\delta } \right)^{2} } }}{18B},\) where we have \(- 72B^{4} + \left( {8B^{2} - 8k\delta } \right)^{2} \ge 0\), which leads to \(k\delta \ge \frac{3\sqrt 2 + 4}{4}B^{2} ,{\text{ then }}\sqrt { - 72B^{4} + \left( {8B^{2} - 8k\delta } \right)^{2} } < \sqrt {\left( {8B^{2} - 8k\delta } \right)^{2} } = \left| {8B^{2} - 8k\delta } \right| = 8k\delta - 8B^{2}\). Therefore, \( A_{1} > \frac{{8B^{2} + 8k\delta - \left( {8k\delta - 8B^{2} } \right)}}{18B} = \frac{8}{9}B > \left( {\sqrt 3 - 1} \right)B;\) on the other hand, from \(\frac{{\partial T_{\left( A \right)}^{3} }}{{\partial A^{3} }} = 18B > 0\), we obtain the first-order derivative of \(T\left( A \right)\) is convex with respect to \(A\), thus \(T\left( A \right)\) increases with \(A\) in (0, \(A_{1}\)), and decreases with \(A\) in \((A_{1} ,A_{2} ); \) furthermore, from above we know \(A_{1} > \left( {\sqrt 3 - 1} \right)B > A\), and we denote \(\check{A} = \left( {\sqrt 3 - 1} \right)B\), so \(T\left( A \right) <\) \(T\left( {\check{A}} \right) = \left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) < 0\), which leads to \({\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{L}^{{MR^{*} }} > 0\).

Proof of Theorem 5

If \(F = {\Pi }_{T}^{{MR^{*} }}\), we can obtain \(\overline{{B^{*} }} = \frac{A}{2} - \frac{{\sqrt k \left( {\delta - C_{{R_{3} }} } \right)}}{4\sqrt F } + \frac{1}{4}\sqrt {4A^{2} - 64L_{2} + \frac{{\delta L_{2} }}{F} + \frac{{4A\sqrt k \delta^{2} }}{{\sqrt F \left( {\delta - C_{{R_{3} }} } \right)}} - \frac{{2L_{2} C_{{R_{3} }} }}{F} - \frac{{8A\sqrt k \delta C_{{R_{3} }} }}{{\sqrt F \left( {\delta - C_{{R_{3} }} } \right)}} + \frac{{kC_{{R_{3} }}^{2} }}{F} + \frac{{4A\sqrt k C_{{R_{3} }}^{2} }}{{\sqrt F \left( {\delta - C_{{R_{3} }} } \right)}}}\), \(\Pi_{T}^{{MR^{*} }} - F = \frac{{\left( {A - B} \right)^{2} k\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{4\left( { - AB + B^{2} + 4k\delta } \right)^{2} }} - F,{ }\) \(\frac{{\partial \left( {\Pi_{T}^{{MR^{*} }} - F} \right)}}{\partial B} = - \frac{{\left( {A - B} \right)k\left( {\left( {A - B} \right)^{2} - 4k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {\left( {A - B} \right)B - 4k\delta } \right)^{3} }}\), from the proof process of Theorem 4 we have \({ }k\delta \ge \frac{3\sqrt 2 + 4}{4}B^{2}\), so \(\left( {A - B} \right)^{2} - 4k\delta \le \left( {A - B} \right)^{2} - \left( {3\sqrt 2 + 4} \right)B^{2} = A^{2} - 2AB - 3\left( {\sqrt 2 + 1} \right)B^{2} < 0\), and thus \(\frac{{\partial \left( {\Pi_{T}^{{MR^{*} }} - F} \right)}}{\partial B} > 0\), which indicates that \(\Pi_{T}^{{MR^{*} }} - F\) increases with \(B\). When \(B = \overline{{B^{*} }}\), we derive \(\Pi_{T}^{{MR^{*} }} - F = 0\); when \(A < B < \overline{{B^{*} }}\), we get \(\Pi_{T}^{{MR^{*} }} - F < 0\); when \(B > \overline{{B^{*} }}\), we have \(\Pi_{T}^{{MR^{*} }} - F > 0\).

Proof of Theorem 6

According to Theorem 4, we have \({\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{L}^{{MR^{*} }} = \frac{{k\left( {\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)^{2} }} > 0\), so the original manufacturer's alliance with the remanufacturer and the third party's recycling platform is more profitable than the original manufacturer's alliance with the remanufacturer.

From \({\Pi }_{R}^{{MRT^{*} }} - {\Pi }_{R}^{{MR^{*} }} = \alpha \left( {\frac{{k\left( {\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)^{2} }} - F} \right)\), we have when \({\Pi }_{R}^{{MRT^{*} }} - {\Pi }_{R}^{{MR^{*} }} > 0\), it must be met \(F < \frac{{k\left( {\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)^{2} }}\), according to Theorem 4, to make \(F\) to be meaningful, we have \(F > \frac{{\left( {A - B} \right)^{2} k\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{4\left( { - AB + B^{2} + 4k\delta } \right)^{2} }}\).

Besides, when \({\Pi }_{R}^{{MRT^{*} }} - {\Pi }_{R}^{{MR^{*} }} < 0\), it must be met \(F > \frac{{k\left( {\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)^{2} }}\), since the third-party recycling platform is a follower in the game, and \(F > \frac{{k\left( {\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)^{2} }}\) does not meet the actual situation. Thus there exists a set \( F^{*} = \left( {\frac{{\left( {A - B} \right)^{2} k\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{4\left( { - AB + B^{2} + 4k\delta } \right)^{2} }}, \frac{{k\left( {\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)^{2} }}} \right)\) such that when \(F \in F^{*}\), the remanufacturer’s profit in Model MRT is greater than that in Model MR.

When \(F \in F^{*}\),

If \({\Pi }_{R}^{{MR^{*} }} = {\Pi }_{R}^{{RT^{*} }}\), there exists \(\alpha_{1}^{*} = \frac{{{\Pi }_{L}^{{RT^{*} }} - F}}{{{\Pi }_{L}^{{MR^{*} }} }} \) such that when \(\alpha \in \left( {0,\alpha_{1}^{*} } \right)\), we have \({\Pi }_{R}^{{RT^{*} }} > {\Pi }_{R}^{{MR^{*} }}\); when \(\alpha \in \left( {\alpha_{1}^{*} ,1} \right)\), we have \({\Pi }_{R}^{{RT^{*} }} < {\Pi }_{R}^{{MR^{*} }}\);

If \({\Pi }_{R}^{{MRT^{*} }} = {\Pi }_{R}^{{RT^{*} }} ,{\text{ there exists }}\alpha_{2}^{*} = \frac{{{\Pi }_{L}^{{RT^{*} }} - F}}{{{\Pi }_{L}^{{MRT^{*} }} - F}}{\text{ such that when }}\alpha \in \left( {0,\alpha_{2}^{*} } \right)\), we have \({\Pi }_{R}^{{MRT^{*} }} < {\Pi }_{R}^{{RT^{*} }}\); when \(\alpha \in \left( {\alpha_{2}^{*} ,1} \right)\), we have \({\Pi }_{R}^{{MRT^{*} }} > {\Pi }_{R}^{{RT^{*} }}\).

Proof of Theorem 7

From \({\Pi }_{M}^{{MRT^{*} }} - {\Pi }_{M}^{{MR^{*} }} = \left( {1 - \alpha } \right)({\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{L}^{{MR^{*} }} - F)\), and \({\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{L}^{{MR^{*} }} = \frac{{k\left( {\left( {A - B} \right)B\left( {3A^{2} - 2AB + 2B^{2} } \right) - 4\left( {A^{2} + 2AB - 2B^{2} } \right)k\delta } \right)\left( {\delta - C_{{R_{3} }} } \right)^{2} }}{{2\left( {A^{2} - 8k\delta } \right)\left( { - AB + B^{2} + 4k\delta } \right)^{2} }} > 0\). Similar to Theorem 6, we can prove that the profit of the original manufacturer in Model MRT is greater than that in Model MR.

Only when \(F \in F^{*}\), the third-party recycling platform is willing to participate in the alliance.

From \(\Pi_{M}^{{MRT^{*} }} - \Pi_{M}^{{MT^{*} }} = \left( {1 - \alpha } \right)\Pi_{L}^{{MRT^{*} }} - \Pi_{L}^{{MT^{*} }} + \alpha F\), we can get that \(\alpha_{3}^{*} = \frac{{\Pi_{L}^{MRT*} - \Pi_{L}^{MT*} }}{{\Pi_{L}^{MRT*} - F}}\) such that when \(\alpha \in \left( {0,\alpha_{3}^{*} } \right)\), we have \({\Pi }_{M}^{{MRT^{*} }} > {\Pi }_{M}^{{MT^{*} }}\); when \(\alpha \in \left( {\alpha_{3}^{*} ,1} \right)\), we have \({\Pi }_{M}^{{MRT^{*} }} < {\Pi }_{M}^{{MT^{*} }}\).

From \({\Pi }_{M}^{{MRT^{*} }} - {\Pi }_{M}^{{RT^{*} }} = \left( {1 - \alpha } \right){\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{M}^{{RT^{*} }} - \left( {1 - \alpha } \right)F\), when \({\Pi }_{M}^{{MRT^{*} }} - {\Pi }_{M}^{{RT^{*} }} = \left( {1 - \alpha } \right){\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{M}^{{RT^{*} }} - \left( {1 - \alpha } \right)F = 0\), we can get \(\alpha_{4}^{*} = \frac{{{\Pi }_{L}^{{MRT^{*} }} - F^{*} - {\Pi }_{M}^{{RT^{*} }} }}{{{\Pi }_{L}^{{MRT^{*} }} - F^{*} }}\) such that when \(\alpha \in \left( {0,\alpha_{4}^{*} } \right)\), we have \(\Pi_{M}^{{MRT^{*} }} > \Pi_{M}^{{RT^{*} }}\).

\(\alpha_{3}^{*} = \frac{{{\Pi }_{L}^{{MRT^{*} }} - {\Pi }_{L}^{{MT^{*} }} }}{{{\Pi }_{L}^{{MRT^{*} }} - F}}\), \(\alpha_{4}^{*} = \frac{{{\Pi }_{L}^{{MRT^{*} }} - F^{*} - {\Pi }_{M}^{{RT^{*} }} }}{{{\Pi }_{L}^{{MRT^{*} }} - F^{*} }}\), when \(\alpha_{3}^{*} > \alpha_{4}^{*}\) and \(\alpha \in \left( {0,\alpha_{4}^{*} } \right)\), the original manufacturer will get the maximum profit when the three parties of the closed-loop supply chain make the alliance; when \(\alpha_{3}^{*} < \alpha_{4}^{*}\) and \(\alpha \in \left( {0,{ }\alpha_{3}^{*} } \right)\), the original manufacturer will get the maximum profit when the three parties of the closed-loop supply chain make the alliance.

According to Theorem 6, we can obtain that when \(\alpha \in \left( {\alpha_{2}^{*} ,1} \right)\) and \(F \in F^{*}\), the remanufacturer will get the maximum benefit when the three parties of the closed-loop supply chain make the alliance. And \(\alpha_{2}^{*} = \frac{{\Pi_{L}^{{RT^{*} }} - F^{*} }}{{\Pi_{L}^{{MRT^{*} }} - F^{*} }}\), \(\alpha_{4}^{*} = \frac{{{\Pi }_{L}^{{MRT^{*} }} - F^{*} - {\Pi }_{M}^{{RT^{*} }} }}{{{\Pi }_{L}^{{MRT^{*} }} - F^{*} }}\), \(\alpha_{4}^{*} - \alpha_{2}^{*} = \frac{{{\Pi }_{L}^{{MRT^{*} }} - \Pi_{L}^{{RT^{*} }} - {\Pi }_{M}^{{RT^{*} }} }}{{{\Pi }_{L}^{{MRT^{*} }} - F^{*} }}\), it is obvious when the three parties make the alliance, the supply chain benefit is the largest, so we have \(\alpha_{4}^{*} > \alpha_{2}^{*}\). Since the original manufacturer is the leader in the game, the technology licensing rate \(\alpha\) is controlled at \(\alpha \in \left( {\alpha_{2}^{*} ,\alpha_{4}^{*} } \right)\) and the fixed fee paid to the third-party recycling platform is controlled at, when the three parties of the closed-loop supply chain jointly form an alliance, the original manufacturer, remanufacturer and third-party recycling platform can all get the most benefits.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Yuan, P., Wen, H. et al. Pricing and recycling decisions of remanufacturing alliances with third-party recycling platform. Ann Oper Res (2022). https://doi.org/10.1007/s10479-022-05003-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-022-05003-9

Keywords

Navigation