Skip to main content
Log in

Separation results for multi-product inventory hedging problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We analyze financial hedging tools for inventory management in a risk-averse corporation. We consider the problem of optimizing simultaneously over both the operational policy and the hedging policy of the corporation in a multi-product model. Our main contribution is a separation result such that for a corporation with multiple products and inventory departments, the inventory decisions of each department can be made independently of the other departments’ decisions. That is, no interaction needs to be considered among different products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blome, C., & Schoenherr, T. (2011). Supply chain risk management in financial crises—a multiple case-study approach. International Journal of Production Economics, 134, 43–57.

    Article  Google Scholar 

  • Caldentey, R., & Haugh, M. B. (2006). Optimal control and hedging of operations in the presence of financial markets. Mathematics of Operations Research, 31(2), 285–304.

    Article  Google Scholar 

  • Caldentey, R., & Haugh, M. B. (2009). Supply contracts with financial hedging. Operations Research, 57(1), 47–65.

    Article  Google Scholar 

  • C̆erný, A., & Kallsen, J. (2007). On the structure of general mean-variance hedging strategies. Annals of Probability, 35(4), 1479–1531.

    Article  Google Scholar 

  • Chen, X., Sim, M., Simchi-Levi, D., & Sun, P. (2007). Risk aversion in inventory management. Operations Research, 55(5), 828–842.

    Article  Google Scholar 

  • Choi, T., Li, D., & Yan, H. (2008). Mean-variance analysis for the newsvendor problem. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 38(5), 1169–1180.

    Article  Google Scholar 

  • Föllmer, H., & Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In M. H. A. Davis & R. J. Elliott (Eds.), Applied stochastic analysis, stochastics monographs (Vol. 5, pp. 389–414). London: Gordon and Breach.

    Google Scholar 

  • Gaur, V., & Seshadri, S. (2005). Hedging inventory risk through market instruments. Manufacturing & Service Operations Management, 7(2), 103–120.

    Article  Google Scholar 

  • Pham, H. (2009). Continuous-time stochastic control and optimization with financial applications. Berlin: Springer.

    Book  Google Scholar 

  • Schweizer, M. (1992). Mean-variance hedging for general claims. The Annals of Applied Probability, 2(1), 171–179.

    Article  Google Scholar 

  • Schweizer, M. (1995). On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stochastic Analysis and Applications, 13(5), 573–599.

    Article  Google Scholar 

  • Schweizer, M. (2001). A guided tour through quadratic hedging approaches. In E. Jouini, J. Cvitanić, & M. Musiela (Eds.), Option pricing, interest rates and risk management (pp. 538–574). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Sun, Y. (2011). Price manipulation with dark pools and multi-product separation in inventory hedging. Ph.D. dissertation, Cornell University.

  • Sun, Y., Wissel, J., & Jackson, P. L. (2011). Multi-product separation result for inventory management under inflation risk. ORIE technical report #1480, Cornell University. http://hdl.handle.net/1813/23357.

  • Wu, D. D., & Olson, D. L. (2009). Risk issues in operations: methods and tools. Production Planning & Control, 20(4), 293–294.

    Article  Google Scholar 

  • Wu, D. D., Olson, D. L., & Birge, J. R. (2011). Introduction to special issue on “Enterprise risk management in operations”. International Journal of Production Economics, 134(1), 1–2.

    Article  Google Scholar 

  • Wu, D. D., Olson, D. L., & Birge, J. R. (2012). Guest editorial to “Special issue on operational research in risk management”. Computers & Operations Research, 39(4), 751–752.

    Article  Google Scholar 

  • Wu, J., Li, J., Wang, S., & Cheng, T. C. E. (2009). Mean-variance analysis of the newsvendor model with stockout cost. Omega, 37(3), 724–730.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the two anonymous referees and the editor for their constructive criticism and many suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuemeng Sun.

Appendix

Appendix

All proofs are presented in this appendix.

Proof of Theorem 1

The proof follows closely the proof of Proposition 6.6.5 in Pham (2009). Recall that

$$\begin{aligned} A^{\gamma}(\lambda) =&\inf_{\theta\in\varTheta}E \bigl[ \bigl(\omega _T^{\gamma,\theta}-\lambda\bigr)^2 \bigr],\quad \lambda\in\mathbb{R}, \\ B^{\gamma}(m) =&\inf_{\theta\in\varTheta} \bigl\{ Var \bigl[\omega_T^{\gamma,\theta} \bigr] | E \bigl[\omega_T^{\gamma,\theta} \bigr]=m \bigr\} ,\quad m\in\mathbb{R}, \end{aligned}$$

with \(\omega_{T}^{\gamma,\theta} = \omega_{T}\) given in (2). We shall first prove that

$$\begin{aligned} A^{\gamma}(\lambda) =&\inf_{m} \bigl[B^{\gamma }(m)+(m-\lambda)^2 \bigr],\quad \lambda\in \mathbb{R}, \end{aligned}$$
(25)
$$\begin{aligned} B^{\gamma}(m) =&\sup_{\lambda} \bigl[A^{\gamma }(\lambda )-(m-\lambda)^2 \bigr],\quad m\in \mathbb{R}. \end{aligned}$$
(26)

Take any \(\lambda\in\mathbb{R}\). We start by noting that

$$\begin{aligned} E\bigl[\bigl(\omega_T^{\lambda,\theta}-\lambda\bigr)^2 \bigr]=Var\bigl[\omega_T^{\gamma ,\theta }\bigr]+\bigl(E\bigl[ \omega_T^{\gamma,\theta}\bigr]-\lambda\bigr)^2. \end{aligned}$$

Let \(m \in\mathbb{R}\). Suppose first that \(\{ \theta\,|\, E[\omega _{T}^{\gamma,\theta}] = m \} \neq\emptyset\). By definition of B γ(m), for each ϵ>0 we can find θ ϵΘ with controlled diffusion \(\omega^{\gamma,\theta^{\epsilon}}\), such that \(E[\omega^{\gamma,\theta^{\epsilon}}_{T}]=m\) and \(Var[\omega^{\gamma,\theta^{\epsilon}}_{T}]\leq B^{\gamma }(m)+\epsilon\), that is

$$\begin{aligned} E\bigl[\bigl(\omega^{\gamma,\theta^{\epsilon}}_T-\lambda\bigr)^2 \bigr]\leq B^{\gamma}(m)+(m-\lambda)^2+\epsilon \end{aligned}$$

and hence

$$\begin{aligned} A^{\gamma}(\lambda)=\inf_{\theta\in\varTheta}E \bigl[\bigl(\omega ^{\gamma ,\theta}_T-\lambda\bigr)^2\bigr] \leq B^{\gamma}(m)+(m-\lambda)^2. \end{aligned}$$
(27)

Next, if \(\{ \theta\,|\, E[\omega_{T}^{\gamma,\theta}] = m \} = \emptyset \), then B γ(m)=∞. So we have (27) for all \(m \in\mathbb{R}\). On the other hand, for each ϵ>0 we can find θ ϵΘ with controlled diffusion \(\omega^{\gamma,\theta ^{\epsilon }}\), such that

$$\begin{aligned} A^{\gamma}(\lambda) + \epsilon\geq E\bigl[\bigl(\omega^{\gamma,\theta ^{\epsilon }}_T- \lambda\bigr)^2\bigr] = Var\bigl[\omega^{\gamma,\theta^{\epsilon}}_T\bigr] + \bigl(E\bigl[ \omega^{\gamma ,\theta ^{\epsilon}}_T\bigr]-\lambda\bigr)^2. \end{aligned}$$

Setting \(m_{\lambda,\epsilon} = E[\omega^{\gamma,\theta^{\epsilon }}_{T}]\), it follows that

$$A^{\gamma}(\lambda) \geq B^{\gamma}(m_{\lambda,\epsilon}) + (m_{\lambda ,\epsilon} - \lambda)^2 - \epsilon. $$

Together with (27) we obtain (25).

Also, since XVar[X] is convex in X, the function B γ(m) is convex in m, and since

$$\begin{aligned} A^{\gamma}(\lambda) =&\inf_{m} \bigl[B^{\gamma }(m)+(m-\lambda )^2\bigr], \\ \frac{(\lambda^2-A^{\gamma}(\lambda))}{2} =&\sup_m \biggl[m\lambda- \frac{B^{\gamma}(m)+m^2}{2} \biggr], \end{aligned}$$

the function \(\lambda\mapsto\frac{\lambda^{2}-A^{\gamma}(\lambda)}{2}\) is the Fenchel-Legendre transform of the convex function \(m\mapsto\frac{(B^{\gamma}(m)+m^{2})}{2}\). We then have the duality relation

$$\begin{aligned} \frac{(B^{\gamma}(m)+m^2)}{2}=\sup_{\lambda} \biggl[m\lambda - \frac{(\lambda^2-A^{\gamma}(\lambda))}{2} \biggr], \end{aligned}$$

which yields (26).

Finally, take any \(m\in\mathbb{R}\), and let \(\lambda_{m}\in\mathbb {R}\) be an argument maximum of B γ(m) in (26). Then m is an argument minimum of A γ(λ m ) in (25). Since

$$\begin{aligned} m\mapsto B^{\gamma}(m)+(m-\lambda_m)^2\quad \mbox{is strictly convex}, \end{aligned}$$

this argument minimum is unique. Moreover, suppose that \(\hat{\theta}_{\lambda_{m}}\in\varTheta\) with controlled diffusion \(\hat{\omega}_{T}^{\gamma,\theta,\lambda_{m}}\) is an optimal control for A γ(λ m ). Set \(m_{\lambda _{m}}=E[\hat {\omega}_{T}^{\gamma,\theta,{\lambda_{m}}}]\). We obtain

$$\begin{aligned} A^{\gamma}({\lambda_m}) =&Var\bigl[\hat{\omega}_T^{\gamma,\theta ,{\lambda _m}} \bigr]+(m_{{\lambda_m}}-{\lambda_m})^2 \\ \geq&B^{\gamma}(m_{{\lambda_m}})+(m_{{\lambda_m}}-{ \lambda_m})^2. \end{aligned}$$

Therefore \(m=m_{\lambda_{m}}=E[\hat{\omega}_{T}^{\gamma,\theta,\lambda_{m}}]\). Hence

$$\begin{aligned} B^{\gamma}(m)=A^{\gamma}(\lambda_m)-(m- \lambda_m)^2 =&E\bigl[\bigl(\hat{\omega}_T^{\gamma,\theta,\lambda_m} - \lambda _m\bigr)^2\bigr]- \bigl(E\bigl[\hat{ \omega}_T^{\gamma,\theta,\lambda_m}\bigr]-\lambda_m \bigr)^2\\ =&Var\bigl[\hat{\omega}_T^{\gamma,\theta,\lambda_m}\bigr] \end{aligned}$$

and so \(\hat{\theta}_{\lambda_{m}}\) is a solution to B γ(m). □

For the proof of Theorem 3, we need the following result which provides the explicit expression for the optimal value in (13) by solving for the optimal hedging strategy. This is a straightforward extension of Theorem 2 in Caldentey and Haugh (2006) to the multi-product case.

Proposition 1

Let \(K_{t}=\int_{0}^{t}\eta_{s}^{2}ds\). The value

$$\begin{aligned} A^{\gamma}(\lambda)=E\bigl[\bigl(V_T^{\gamma}+G_T^*+ \omega_0-\lambda\bigr)^2\bigr] \end{aligned}$$

is given by

$$\begin{aligned} A^{\gamma}(\lambda) =&e^{-K_T} \Biggl( \bigl(\omega_0+V_0^{\gamma}- \lambda \bigr)^2+\int_0^Te^{K_t} \sum_{j=1}^N E \bigl[\bigl( \delta_t^{\gamma_j}\bigr)^2 \bigr]dt \Biggr). \end{aligned}$$

The proof is the same as for Theorem 2 in Caldentey and Haugh (2006), and it is formulated for the multi-product case in Sun (2011). It can be seen from Proposition 1 that, given the Föllmer-Schweizer decomposition, the value function in (13) can be determined without explicit reference to the optimal hedging strategy.

Proof of Theorem 3

Let us first suppose K T >0. By Theorem 1 we have

$$\begin{aligned} B^{\gamma}(m) &=\inf_{\theta\in\varTheta} \bigl\{ Var[ \omega _T]\bigm| E[\omega_T]=m \bigr\} =\sup_{\lambda}\bigl(A^{\gamma}(\lambda)-(m- \lambda)^2\bigr). \end{aligned}$$

The maximum in the last line is achieved for

$$\begin{aligned} 0=\frac{\partial}{\partial\lambda}A^{\gamma}(\lambda)+2(m-\lambda) \end{aligned}$$

where

$$\begin{aligned} A^{\gamma}(\lambda)=e^{-K_T} \Biggl(\bigl(\omega_0+V_0^{\gamma}- \lambda \bigr)^2+\int_0^Te^{K_t} \sum_{j=1}^nE\bigl[\bigl( \delta_t^{\gamma_j}\bigr)^2\bigr]dt \Biggr) \end{aligned}$$

by Proposition 1. So the optimizer λ=λ m fulfills

$$\begin{aligned} &-2e^{-K_T}\bigl(\omega_0+V_0^{\gamma}- \lambda\bigr)+2(m-\lambda)=0 \\ &\quad{}\Leftrightarrow\quad\bigl(1-e^{-K_T}\bigr)\lambda=m-e^{-K_T}\bigl( \omega_0+V_0^{\gamma }\bigr) \\ &\quad{}\Leftrightarrow\quad\lambda=\frac{m-e^{-K_T}(\omega_0+V_0^{\gamma })}{1-e^{-K_T}}. \end{aligned}$$

Plugging this equation into (12), we obtain

$$\begin{aligned} B^{{\gamma}}(m)=A^{\gamma}(\lambda)-(m-\lambda)^2 =&e^{-K_T} \biggl(\frac{\omega_0+V_0^{\gamma}-m}{1-e^{-K_T}} \biggr)^2- \biggl( \frac{e^{-K_T}(\omega_0+V_0^{\gamma }-m)}{1-e^{-K_T}} \biggr)^2 \\ &+e^{-K_T}\int_0^Te^{K_t} \sum_{j=1}^n E\bigl[\bigl( \delta_t^{\gamma_j}\bigr)^2\bigr]dt. \end{aligned}$$

This proves (20) and (21). To solve the problem

$$\begin{aligned} U^{\gamma}=\sup_m\bigl(m-\kappa B^{\gamma}(m)\bigr), \end{aligned}$$

note that the first order condition for m=m opt is

$$\begin{aligned} & 1-\kappa\frac{\partial}{\partial m}B^{\gamma}(m)=0 \\ &\quad{}\Leftrightarrow\quad 2\bigl(m-\omega_0-V_0^{\gamma} \bigr)\frac {e^{-K_T}}{1-e^{-K_T}}=\frac{1}{\kappa} \\ &\quad{}\Leftrightarrow\quad m=\frac{1}{2\kappa}\frac {e^{-K_T}}{1-e^{-K_T}}+\omega _0+V_0^{\gamma} \\ &\quad{}\Leftrightarrow\quad \bigl(m-\omega_0-V_0^{\gamma} \bigr)^2=\frac{1}{4\kappa ^2} \biggl(\frac{e^{-K_T}}{1-e^{-K_T}} \biggr)^2. \end{aligned}$$

Plugging the last two equations and (21) into (9), we obtain

$$\begin{aligned} U^{\gamma} =&m_{opt}-\kappa B^{\gamma}(m_{opt}) \\ =&\frac{1}{2\kappa}\frac{e^{-K_T}}{1-e^{-K_T}}+\omega _0+V_0^{\gamma }- \frac{1}{4\kappa}\frac{e^{-K_T}}{1-e^{-K_T}}-\kappa e^{-K_T}\int _0^Te^{K_t}\sum _{j=1}^NE\bigl[\bigl(\delta_t^{\gamma_j} \bigr)^2\bigr]dt \\ =&\omega_0+\sum_{j=1}^N V_0^{\gamma_j}+\frac{1}{4\kappa }\bigl(e^{K_T}-1\bigr)- \kappa e^{-K_T}\int_0^Te^{K_t} \sum_{j=1}^NE\bigl[\bigl( \delta_t^{\gamma_j}\bigr)^2\bigr]dt. \end{aligned}$$

This finishes the proof of (22) and (23).

Next suppose that K T =0. Then \(E[\omega_{T}] = \omega_{0} + V_{0}^{\gamma}\). If \(m > \omega_{0} + V_{0}^{\gamma}\), the supremum in (12) is achieved for λ→∞, and if \(m < \omega_{0} + V_{0}^{\gamma}\), the supremum in (12) is achieved for λ→−∞, and in these cases we have B γ(m)=∞. If \(m = \omega _{0} + V_{0}^{\gamma}\), we have by Proposition 1

$$B^{\gamma}(m) = A^{\gamma}(\lambda) - (m-\lambda) = \int _0^Te^{K_t}\sum _{j=1}^nE\bigl[\bigl(\delta_t^{\gamma_j} \bigr)^2\bigr]dt $$

for all \(\lambda\in\mathbb{R}\). Hence we have (20) and (21). From (9) we also obtain \(m_{opt} = \omega_{0} + V_{0}^{\gamma}\), which yields (22) and (23). □

Proof of Theorem 4

For simplicity, we suppress the dependence on the index j in the proof. The problem we consider is

$$\begin{aligned} \max_{\gamma} \biggl(V_0^{\gamma}-\kappa e^{-K_T}\int _0^Te^{K_t}E\bigl[\bigl( \delta_t^{\gamma}\bigr)^2\bigr]dt \biggr) \end{aligned}$$
(28)

where \(V_{0}^{\gamma}\) and \(\delta_{s}^{\gamma}\) are given in (18) and (19). First, note that it follows directly from (19) and the boundedness of ΔBS that \(e^{-K_{T}}\int_{0}^{T}e^{K_{t}}E[(\delta_{t}^{\gamma})^{2}]dt\) is a bounded function in γ∈[0,∞). Next, we compute

$$\begin{aligned} \frac{\partial V_0^{\gamma}}{\partial \gamma} =& s-p + (R+q-s)\varPhi \biggl(\frac{\log\frac{\hat{D}_0}{\gamma } + \frac{1}{2}Y}{\sqrt{Y}} \biggr) \\ \frac{\partial^2 V_0^{\gamma}}{\partial \gamma^2} =& -(R+q-s) \frac{1}{\gamma\sqrt{Y}} \phi \biggl(\frac {\log\frac {\hat{D}_0}{\gamma} + \frac{1}{2}Y}{\sqrt{Y}} \biggr) <0 \end{aligned}$$

where ϕ(⋅) and Φ(⋅) are the pdf and cdf of the standard normal distribution, and \(Y = c^{2} T + b^{2} \int_{0}^{T} \sigma_{t}^{2} dt\). Hence \(V_{0}^{\gamma}\) is a strictly concave function in γ which satisfies

$$\begin{aligned} \lim_{\gamma\rightarrow+\infty}\frac{\partial V_0^{\gamma }}{\partial \gamma}=s-p<0,\qquad \lim_{\gamma\rightarrow0}\frac{\partial V_0^{\gamma}}{\partial \gamma }=R-p+q>0. \end{aligned}$$

The last inequality together with the boundedness of \(e^{-K_{T}}\int_{0}^{T}e^{K_{t}}E[(\delta_{t}^{\gamma})^{2}]dt\) implies that there exists a solution to (28). Moreover, if κ is sufficiently small, then \(| \frac{\partial^{2}}{\partial\gamma^{2}} ( \kappa e^{-K_{T}} \int_{0}^{T}e^{K_{t}}E[(\delta_{t}^{\gamma})^{2}]dt ) |\) is sufficiently small for γ inside a suitable compact interval. Then the objective function in (28) is strictly concave inside this interval, strictly increasing at the left end point, and strictly decreasing at the right end point. It then easily follows that the objective function has a unique maximizer. □

Remark

The objective function in (28) is in general not concave in γ on [0,∞).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wissel, J. & Jackson, P.L. Separation results for multi-product inventory hedging problems. Ann Oper Res 237, 143–159 (2016). https://doi.org/10.1007/s10479-013-1473-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1473-6

Keywords

Navigation