Skip to main content
Log in

On confluent hypergeometric functions and generalized Bessel functions

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

Conditions are determined on the parameters a and c so that the confluent hypergeometric function Φ(a, c; z) = 1 F 1(a, c; z) is strongly convex of order 1/2 and the function zΦ(a, c; z) is strongly starlike of order 1/2 in D. Also sufficient conditions are obtained on a and c which ensure that the subordination (c/a)Φ′(a, c; z) ≺ ((1 + z)/(1 − z))1/2 holds. We also derive conditions on the parameters associated with the generalized and normalized Bessel function u p (z) of order p so that u p is strongly convex of order 1/2 and zu p is strongly starlike of order 1/2. As an application interesting examples are given including some mapping properties of Alexander and Libera operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Ali, S. R. Mondal and V. Ravichandran, On the Janowski convexity and starlikeness of the confluent hypergeometric function, Bull. Belg. Math. Soc. Simon Stevin, 22 (2015), 227–250.

    MathSciNet  MATH  Google Scholar 

  2. H. A. Al-Kharsani, Á. Baricz and K. S. Nisar, Differential subordinations and superordinations for generalized Bessel functions, Bull. Korean Math. Soc., 53 (2016), 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Balasubramanian, S. Ponnusamy and M. Vuorinen, On hypergeometric functions and function spaces, J. Comput. Appl. Math., 139 (2002), 299–322.

    Article  MathSciNet  MATH  Google Scholar 

  4. Á. Baricz, Applications of the admissible functions method for some differential equations, Pure Math. Appl., 13 (2002), 433–440.

    MathSciNet  MATH  Google Scholar 

  5. Á. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica, 48(71) (2006), 13–18.

    MathSciNet  MATH  Google Scholar 

  6. Á. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, 1994, Springer (Berlin, 2010).

    MATH  Google Scholar 

  7. Á. Baricz and B. A. Frasin, Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23 (2010), 371–376.

    Article  MathSciNet  MATH  Google Scholar 

  8. Á. Baricz and S. Ponnusamy, Differential inequalities and Bessel functions, J. Math. Anal. Appl., 400 (2013), 558–567.

    Article  MathSciNet  MATH  Google Scholar 

  9. Á. Baricz and R. Szász, The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl. (Singap.), 12 (2014), 485–509.

    Article  MathSciNet  MATH  Google Scholar 

  10. Á. Baricz, P. A. Kupán and R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc., 142 (2014), 2019–2025.

    Article  MathSciNet  MATH  Google Scholar 

  11. Á. Baricz, E. Deniz, M. Çăglar and H. Orhan, Differential subordinations involving generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (2015), 1255–1280.

    Article  MathSciNet  MATH  Google Scholar 

  12. Á. Baricz, D. K. Dimitrov and I. Mező, Radii of starlikeness and convexity of some q-Bessel functions, J. Math. Anal. Appl., 435 (2016), 968–985.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc., 110 (1990), 333–342.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker (New York, 2000).

    Google Scholar 

  16. S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057–1077.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Ponnusamy and M. Vuorinen, Univalence and convexity properties for confluent hypergeometric functions, Complex Variables Theory Appl., 36 (1998), 73–97.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Ponnusamy and M. Vuorinen, Univalence and convexity properties for Gaussian hypergeometric functions, Rocky Mountain J. Math., 31 (2001), 327–353.

    Article  MathSciNet  MATH  Google Scholar 

  19. St. Ruscheweyh and V. Singh, On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl., 113 (1986), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. N. Shanmugam, Convolution and differential subordination, Internat. J. Math. Math. Sci., 12 (1989), 333–340.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. N. Shanmugam, Hypergeometric functions in the geometric function theory, Appl. Math. Comput., 187 (2007), 433–444.

    MathSciNet  MATH  Google Scholar 

  22. A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J. Inequal. Pure Appl. Math., 5 (2004), Article 83, 10 pp.

  23. R. Szász, About the radius of starlikeness of Bessel functions of the first kind, Monatsh. Math., 176 (2015), 323–330.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bohra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohra, N., Ravichandran, V. On confluent hypergeometric functions and generalized Bessel functions. Anal Math 43, 533–545 (2017). https://doi.org/10.1007/s10476-017-0203-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-017-0203-8

Keywords

Mathematics Subject Classification

Navigation