Skip to main content
Log in

Asymptotic convergence of solutions of a scalar q-difference equation with double delays

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We obtain sufficient conditions for the asymptotic convergence of all solutions of a scalar q-difference equation with double delays. Moreover, we prove that the limits of the solutions could be formulated in terms of the initial functions and the solution of a corresponding sum equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams C. R.: On the linear ordinary q-difference equation. Ann. Math. 30, 195–205 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arino O., Pituk M.: Convergence in asymptotically autonomous functional differential equations. J. Math. Anal. Appl. 237, 376–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atkinson F. V., Haddock J. R.: Criteria for asymptotic constancy of solutions of functional differential equations. J. Math. Anal. Appl. 91, 410–423 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Bangerezako, An Introduction to q-Difference Equations, University of Burundi Preprints (Bujumbura, 2008).

  5. Bastinec J., Diblik J., Smarda Z.: Convergence tests for one scalar differential equation with vanishing delay. Arch. Math. (Brno) 36, 405–414 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Bereketoglu H., Huseynov A.: Convergence of solutions of nonhomogeneous linear difference systems with delays. Acta Appl. Math. 110, 259–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bereketoglu H., Karakoc F.: Asymptotic constancy for impulsive delay differential equations. Dynam. Systems Appl. 17, 71–83 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Bereketoglu H., Karakoc F.: Asymptotic constancy for a system of impulsive pantograph equations. Acta Math. Hungar. 145, 1–12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bereketoglu H., Oztepe G. S.: Convergence of the solution of an impulsive differential equation with piecewise constant arguments. Miskolc Math. Notes 14, 801–815 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Bereketoglu H., Oztepe G. S.: Asymptotic constancy for impulsive differential equations with piecewise constant argument. Bull. Math. Soc. Sci. Math. 57, 181–192 (2014)

    MathSciNet  MATH  Google Scholar 

  11. H. Bereketoglu and M. Pituk, Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays, in: Dynamical Systems and Differential Equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., (2003), pp. 100–107.

  12. Berezansky L., Diblik J., Ruzickova M., Suta Z.: Asymptotic convergence of the solutions of a discrete equation with two delays in the critical case. Abstr. Appl. Anal. 2011, 15 pp. (2011)

    MathSciNet  MATH  Google Scholar 

  13. M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Springer Science & Business Media (Boston, 2001).

  14. M. Bohner and A. C. Peterson, Advances in Dynamic Equations on Time Scales, Springer Science & Business Media (Boston, 2002).

  15. Carmichael R. D.: The general theory of linear q-difference equations. Amer. J. Math. 34, 147–168 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diblik J.: A criterion of asymptotic convergence for a class of nonlinear differential equations with delay. Nonlinear Anal. 47, 4095–4106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diblik J., Ruzickova M.: Convergence of the solutions of the equation \({\dot{y} (t) =\beta (t) [y( t-\delta ) -y( t-\tau )] }\) in the critical case. J. Math. Anal. Appl. 331, 1361–1370 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diblik J., Ruzickova M., Smarda Z., Suta Z.: Asymptotic convergence of the solutions of a dynamic equation on discrete time scales. Abstr. Appl. Anal. 2012, 20 pp. (2012)

    MathSciNet  MATH  Google Scholar 

  19. Györi I., Karakoc F., Bereketoglu H.: Convergence of solutions of a linear impulsive differential equations system with many delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18, 191–202 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Jackson F. H.: On q-difference equations. Amer. J. Math. 32, 305–314 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag (New York, 2002).

  22. Lavagno A., Swamy P. N.: q-Deformed structures and nonextensive statistics: a comparative study. Phys. A 305, 310–315 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mason T. E.: On properties of the solutions of linear q-difference equations with entire function coefficients. Amer. J. Math. 37, 439–444 (1915)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oztepe G. S., Bereketoglu H.: Convergence in an impulsive advanced differential equations with piecewise constant argument. Bull. Math. Anal. Appl. 4, 57–70 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Strominger A.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Youm D.: q-Deformed Conformal Quantum Mechanics. Phys. Rev. D 62, 095009 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Oztepe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bereketoglu, H., Kavgaci, M.E. & Oztepe, G.S. Asymptotic convergence of solutions of a scalar q-difference equation with double delays. Acta Math. Hungar. 148, 279–293 (2016). https://doi.org/10.1007/s10474-015-0575-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-015-0575-9

Keywords and phrases

Mathematics Subject Classification

Navigation