Skip to main content
Log in

Invariants for homology classes with application to optimal search and planning problem in robotics

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We consider planning problems on Euclidean spaces of the form ℝ, where \(\widetilde{\mathcal{O}}\) is viewed as a collection of obstacles. Such spaces are of frequent occurrence as configuration spaces of robots, where \(\widetilde{\mathcal{O}}\) represent either physical obstacles that the robots need to avoid (e.g., walls, other robots, etc.) or illegal states (e.g., all legs off-the-ground). As state-planning is translated to path-planning on a configuration space, we collate equivalent plannings via topologically-equivalent paths. This prompts finding or exploring the different homology classes in such environments and finding representative optimal trajectories in each such class. In this paper we start by considering the general problem of finding a complete set of easily computable homology class invariants for (N − 1)-cycles in (ℝ. We achieve this by finding explicit generators of the (N − 1)st de Rham cohomology group of this punctured Euclidean space, and using their integrals to define cocycles. The action of those dual cocycles on (N − 1)-cycles gives the desired complete set of invariants. We illustrate the computation through examples. We then show, for the case when N = 2, due to the integral approach in our formulation, this complete set of invariants is well-suited for efficient search-based planning of optimal robot trajectories with topological constraints. In particular, we show how to construct an ‘augmented graph’, \(\widehat{\mathcal{G}}\), from an arbitrary graph \(\mathcal{G}\) in the configuration space. A graph construction and search algorithm can hence be used to find optimal trajectories in different topological classes. Finally, we extend this approach to computation of invariants in spaces derived from (ℝby collapsing a subspace, thereby permitting application to a wider class of non-Euclidean ambient spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baylis, W.E.: Clifford (Geometric) Algebras with Applications in Physics, Mathematics, and Engineering, 1st edn. Birkhuser Boston (1996)

  2. Bhattacharya, S.: A template-based C+ + library for large-scale graph search and planning (2011). See http://subhrajit.net/index.php?WPage=yagsbpl

  3. Bhattacharya, S., Likhachev, M., Kumar, V.: Topological constraints in search-based robot path planning. Auton. Robot. 33(3), 273–290 (2012). doi:10.1007/s10514-012-9304-1

    Article  Google Scholar 

  4. Bott, R., Tu, L.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics. Springer-Verlag, Heidelberg (1982)

    Book  Google Scholar 

  5. Bourgault, F., Makarenko, A.A., Williams, S.B., Grocholsky, B., Durrant-Whyte, H.F.: Information based adaptive robotic exploration. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, pp. 540–545 (2002)

  6. Carlsson, G.: Topology and data. Bull. Amer. Math. Soc. 46, 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge, (2001)

    MATH  Google Scholar 

  8. Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. In: AAAI’06: Proceedings of the 21st National Conference on Artificial intelligence. AAAI Press, pp. 942–947 (2006)

  9. Derenick, J., Kumar, V., Jadbabaie, A.: Towards simplicial coverage repair for mobile robot teams. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 5472–5477 (2010)

  10. Dold, A.: Lectures on Algebraic topology, Classics in Mathematics. 2nd edn. Springer, Heidelberg (1995)

    Google Scholar 

  11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction, Applied Mathematics. American Mathematical Society (2010)

  12. Farber, M.: Topological complexity of motion planning. ArXiv Mathematics e-prints. arXiv: math/0111197 (2001)

  13. Ferguson, D., Howard, T., Likhachev, M.: Motion planning in urban environments. J. Field Robot. 25, 939–960 (2008)

    Article  Google Scholar 

  14. Flanders, H.: Differential Forms with Applications to the Physical Sciences. Dover Publications, New York (1989)

    MATH  Google Scholar 

  15. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.: Gnu Scientific Library: Reference Manual. Network Theory Ltd. (2003)

  16. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. 45, 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghrist, R.: Configuration spaces of graphs and robotics. In: Braids, Links, and Mapping Class Groups: The Proceedings of Joan Birman’s 70th Birthday, vol. 24, pp. 29–40. AMS/IP Studies in Mathematics (2001)

  18. Ghrist, R., Koditschek, D.: Safe cooperative robot dynamics on graphs. SIAM J Contr Optim. 40, 1556–1575 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ghrist, R., LaValle, S.: Nonpositive curvature and pareto optimal motion planning. SIAM J. Contr. Optim. 45(5), 1697–1713 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghrist, R., Muhammad, A: Coverage and hole-detection in sensor networks via homology. In: Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks, IPSN 2005, 25–27 Apr 2005, pp. 254–260. UCLA, Los Angeles, California, USA, IEEE (2005)

  21. Gottlieb, D.H.: Topology and the robot arm. Acta Appl. Math. 11, 117–121 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grigoriev, D., Slissenko, A.: Polytime algorithm for the shortest path in a homotopy class amidst semi-algebraic obstacles in the plane. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, ISSAC ’98, pp. 17–24. ACM: New York, NY, USA (1998)

  23. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci, Cybern. SSC 4, 100–107 (1968)

    Article  Google Scholar 

  24. Hatcher, A.: Algebraic Topology. Cambridge University Press (2001)

  25. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom. Theory Appl. 4, 331–342 (1991)

    MathSciNet  Google Scholar 

  26. Jeffrey, A.: Handbook of Mathematical Formulas and Integrals, 2nd edn. Academic Press (2000)

  27. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Mathematical Sciences, Springer (2004)

  28. Koenig, S., Likhachev, M.: D* Lite. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI), pp. 476–483 (2002)

  29. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. tech. report (1998)

  30. Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. In: Advances in Neural Information Processing Systems (NIPS) 16. Cambridge, MA: MIT Press (2003)

    Google Scholar 

  31. Lum, P.Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., Carlsson, G.: Extracting insights from the shape of complex data using topology. Sci. Rep. 3 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23393618

  32. McKeeman, W.M.: Algorithm 145: adaptive numerical integration by simpson’s rule. Commun. ACM 5, 604 (1962)

    Article  Google Scholar 

  33. Mrozek, M.: Topological dynamics: Rigorous numerics ia cubical homology. In: Zomorodian, A. (ed.) Advances in Applied and Computational Topology: Proc. Symp. Amer. Math. Soc., vol. 70, pp. 41–73 (2012)

  34. Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill (1964)

  35. Sanderson, C.: Armadillo: an open source c++ linear algebra library for fast prototyping and computationally intensive experiments. tech, report, NICTA (2010)

  36. Schmitzberger, E., Bouchet, J., Dufaut, M., Wolf, D., Husson, R.: Capture of homotopy classes with probabilistic road map. In: International Conference on Intelligent Robots and Systems, vol. 3, pp. 2317–2322 (2002)

  37. Seifert, H., Threlfall, W., Birman, J., Eisner, J.: Seifert and Threlfall, A textbook of Topology. Pure and Applied Mathematics, Academic Press (1980)

  38. Stentz, A., Hebert, M.: A complete navigation system for goal acquisition in unknown environments. Auton. Robot. 2, 127–145 (1995)

    Article  Google Scholar 

  39. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics Intelligent Robotics and Autonomous Agents. The MIT Press (2005)

  40. Wynn, P.: (1962) Acceleration techniques in numerical analysis, with particular reference to problems in one independent variable. In: Proc. IFIPS, pp. 149–156. Munich (1962)

  41. Zhou, Y., Hu, B., Zhang, J.: Occlusion detection and tracking method based on bayesian decision theory. In: Chang, L.-W., Lie, W.-N. (eds.) Advances in Image and Video Technology. Lecture Notes in Computer Science, vol. 4319, pp. 474–482. Springer Berlin/Heidelberg (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhrajit Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Lipsky, D., Ghrist, R. et al. Invariants for homology classes with application to optimal search and planning problem in robotics. Ann Math Artif Intell 67, 251–281 (2013). https://doi.org/10.1007/s10472-013-9357-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-013-9357-7

Keywords

Navigation