Skip to main content
Log in

An electronically tunable active-C based analog baseband filter for multi-standard applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

CCCII (Current Controlled Second Generation Current Conveyor) based reconfigurable current-mode Analog Baseband (ABB) low pass filter is presented in this paper. The configurability of the filter is realized with the parasitic impedance at X terminal of CCCII. The 4th order filter operates high tuning range as 1.7 MHz to 17 MHz approximately. Thus, the operation range covers the wireless applications of Bluetooth, CDMA2000, Wideband CDMA, and IEEE 802.11a/b/g/n wireless LANs. Also, the proposed architecture is suitable for other wireless applications such as 3G/4G. In this respect, TSMC 0.18 µm technology is used with Cadence environment to implement the proposed filter, whilst Monte-Carlo analysis and temperature behavior are investigated under post-layout realization of the proposed Active-C based ABB filter (100µmx42µm). In comparison with the previous studies in the literature, proposed architecture gives promising results under different operating conditions for the ABB applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Giannini, V., Craninckx, J., D’Amico, S., & Baschirotto, A. (2007). Flexible baseband analog circuits for software-defined radio front-ends. IEEE Journal of Solid-State Circuits, 42(7), 1501–1512. https://doi.org/10.1109/JSSC.2007.899103

    Article  Google Scholar 

  2. Liu, H., Zhu, Xi., Boon, C. C., & He, X. (2015). Cell-Based variable-gain amplifiers with accurate dB-linear characteristic in 0.18 µm CMOS technology. IEEE Journal of Solid-State Circuits, 50(2), 586–596. https://doi.org/10.1109/JSSC.2014.2368132

    Article  Google Scholar 

  3. Lo, T. Y., Hung, C. C., & Ismail, M. (2009). A wide tuning range GmC filter for multi-mode CMOS direct-conversion wireless receivers. IEEE Journal of Solid-State Circuits, 44(9), 2515–2524. https://doi.org/10.1109/JSSC.2009.2023154

    Article  Google Scholar 

  4. Lo, T. Y., & Hung, C. C. (2007). A wide tuning range Gm-C continuous-time analog filter. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(4), 713–722. https://doi.org/10.1109/TCSI.2007.890614

    Article  Google Scholar 

  5. Razavi, B. (2001). Design of analog CMOS integrated circuits. Boston: McGraw-Hill.

    Google Scholar 

  6. Alaybeyoğlu, E., & Kuntman, H. (2018). A new implementation of the reconfigurable analog baseband low pass filter with cell-based variable transconductance amplifier. Analog Integrated Circuits and Signal Processing, 97(1), 87–96. https://doi.org/10.1007/s10470-018-1241-2

    Article  Google Scholar 

  7. Alaybeyoğlu, E., & Kuntman, H. (2016). CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog Integrated Circuits and Signal Processing, 89(3), 675–684. https://doi.org/10.1007/s10470-016-0760-y

    Article  Google Scholar 

  8. Sedra, A., & Kenneth, S. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.

    Article  Google Scholar 

  9. Cam, Z. G., & Sedef, H. (2017). A new floating memristance simulator circuit based on second generation current conveyor. Journal of Circuits, Systems and Computers, 26(2), 7–9. https://doi.org/10.1142/S0218126617500293

    Article  Google Scholar 

  10. Khan, A. A., Bimal, S., Dey, K. K., & Roy, S. S. (2002). Current conveyor based R- and C- multiplier circuits. AEU - International Journal of Electronics and Communications, 56(5), 312–316.

    Article  Google Scholar 

  11. Nunez, J., Tlelo, E., Ramirez, C., & Jimenez, J. (2015). CCII+ Based on QFGMOS for Implementing Chua s Chaotic Oscillator. IEEE Latin America Transactions, 13(9), 2865–2870. https://doi.org/10.1109/TLA.2015.7350032

    Article  Google Scholar 

  12. Ramírez-Angulo, J., Røbinson, M., & Sánchez-Sinencio, E. (1992). Current-Mode Continuous-Time Filters: Two Design Approaches. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39(6), 337–341. https://doi.org/10.1109/82.145290

    Article  Google Scholar 

  13. Arslan, E., & Morgul, A. (2012). Self-Biasing Current Conveyor for High Frequency Applications. Journal of Circuits, Systems and Computers, 21(05), 1250039. https://doi.org/10.1142/S0218126612500399

    Article  Google Scholar 

  14. Minaei; S., & Ibrahim, M. A. (2009). A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. International Journal of Circuit Theory and Application, 37(7), 793–810.

    Article  MATH  Google Scholar 

  15. Zhu, B., Wang, C., Sun, Y., & Liu, J. (2017). Systematic Design of Current-Mode Multiple-Loop Feedback Filters Based on a Single CDCTA. IETE Journal of Research, 63(3), 435–447. https://doi.org/10.1080/03772063.2016.1274239

    Article  Google Scholar 

  16. Peng, H., Wang, C., & Tian, X. (2016). A Novel Current-Mode High-Frequency Polyphase Filter using Multi-Output Current Differencing Transconductance Amplifiers. Journal of Electrical Engineering, 67(5), 311–322. https://doi.org/10.1515/jee-2016-0046

    Article  Google Scholar 

  17. Li, Y., Wang, C., Zhu, B., & Hu, Z. (2018). Universal Current-Mode Filters Based on OTA and MO-CCCA. IETE Journal of Research, 64(6), 897–906. https://doi.org/10.1080/03772063.2017.1381575

    Article  Google Scholar 

  18. Zeki, A., & Toker, A. (2003). The dual-X current conveyor (DXCCII): A new active device for tunable continuous-time filters. International Journal of Electronics, 89(12), 913–923. https://doi.org/10.1080/0020721031000120461

    Article  Google Scholar 

  19. Senani, R., & Gupta, S. S. (2011). Current-mode universal biquad using current followers: A minimal realization. Radioengineering, 20(4), 898–904.

    Google Scholar 

  20. Chen, H.-P. (2013). Versatile current-mode universal biquadratic filter using DO-CCIIs. International Journal of Electronics, 100(7), 1010–1031. https://doi.org/10.1080/00207217.2012.731370

    Article  Google Scholar 

  21. Chen, H.-P. (2012). Tunable versatile current-mode universal filter based on plus-type DVCCs. AEU - International Journal of Electronics and Communications, 66(4), 332–339. https://doi.org/10.1016/j.aeue.2011.08.010

    Article  Google Scholar 

  22. Laoudias, C., & Psychalinos, C. (2012). Universal biquad filter topology using low-voltage current mirrors. International Journal of Circuit Theory and Applications, 40(1), 65–75. https://doi.org/10.1002/cta.706

    Article  Google Scholar 

  23. Ibrahim, M. A., Minaei, S., & Kuntman, H. (2005). A 22.5MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. AEU - International Journal of Electronics and Communications, 59(5), 311–318. https://doi.org/10.1016/j.aeue.2004.11.027

    Article  Google Scholar 

  24. Yuce, E., Kircay, A., & Tokat, S. (2008). Universal resistorless current-mode filters employing CCCIIs. International Journal of Circuit Theory and Applications, 26(5–6), 739–755.

    Article  MATH  Google Scholar 

  25. Soliman, A. M. (2011). Pathological representation of the two-output CCII and ICCII family and application. International Journal of Circuit Theory and Applications, 39(6), 589–606.

    Article  Google Scholar 

  26. Prommee, P., Tiamsuphat, A., & TaherAbuelma’Atti, M. (2017). Electronically tunable MOS-only current-mode high-order band-pass filters. Turkish Journal of Electrical Engineering and Computer Sciences, 25(2), 1116–1136. https://doi.org/10.3906/elk-1508-250

    Article  Google Scholar 

  27. Prommee, P., & Saising, E. (2018). CMOS-based high-order LP and BP filters using biquad functions. IET Circuits, Devices and Systems, 12(4), 326–334. https://doi.org/10.1049/iet-cds.2017.0493

    Article  Google Scholar 

  28. Maundy, B. J., Elwakil, A. S., Ozoguz, S., & Yildiz, H. A. (2017). Minimal two-transistor multifunction filter design. International Journal of Circuit Theory and Applications, 45(11), 1449–1466.

    Article  Google Scholar 

  29. Maundy, B. J., Elwakil, A. S., Belostotski, L., & Herencsar, N. (2020). Single transistor RC‐only second‐order allpass filters. International Journal of Circuit Theory and Applications, 48(2), 162–169. https://doi.org/10.1002/cta.2721

    Article  Google Scholar 

  30. Yıldız, H. A., Toker, A., Elwakil, A. S., & Ozoguz, S. (2014). MOS-only allpass filters with extended operating frequency range. Analog Integrated Circuits and Signal Processing, 81(1), 17–22. https://doi.org/10.1007/s10470-014-0333-x

    Article  Google Scholar 

  31. Arslan, E., Metin, B., Kuntman, H., & Cicekoglu, O. (2013). MOS-only second order current-mode LP/BP filter. Analog Integrated Circuits and Signal Processing, 74(1), 105–109. https://doi.org/10.1007/s10470-012-9930-8

    Article  Google Scholar 

  32. Arslan, E., Metin, B., & Cicekoglu, O. (2015). MOSFET-only multi-function biquad filter. AEU - International Journal of Electronics and Communications, 69(12), 1737–1740. https://doi.org/10.1016/j.aeue.2015.07.018

    Article  Google Scholar 

  33. Safari, L., Minaei, S., & Metin, B. (2014). A low power current controllable single-input three-output current-mode filter using MOS transistors only. AEU - International Journal of Electronics and Communications, 68(12), 1205–1213. https://doi.org/10.1016/j.aeue.2014.06.011

    Article  Google Scholar 

  34. Yesil, A., Ozenli, D., Arslan, E., & Kacar, F. (2017). Electronically tunable MOSFET-only current-mode biquad filter. AEU - International Journal of Electronics and Communications, 81, 227–235. https://doi.org/10.1016/j.aeue.2017.07.019

    Article  Google Scholar 

  35. Yesil, A., Ozenli, D., Arslan, E., & Kuntman, H. (2017). Current mode single-input multi-output MOSFET-only filter. AEU - International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2017.06.037

    Article  Google Scholar 

  36. Yesil, A., & Minaei, S. (2018). High-order realisation of MOSFET-only bandpass filters for RF applications. IET Circuits, Devices and Systems, 12(4), 467–477. https://doi.org/10.1049/iet-cds.2017.0442

    Article  Google Scholar 

  37. Ozenli, D., Yesil, A., & Kuntman, H. (2021). A current-mode MOSFET-C analog filter for the high-frequency band applications. International Journal of Circuit Theory and Applications, 49(3), 890–908.

    Article  Google Scholar 

  38. Yesil, A., & Ozenli, D. (2021). 4th order current-mode and transresistance-mode MOSFET-C low-pass filter for multi-standard receivers. Microelectronics Journal, 115(July), 105159. https://doi.org/10.1016/j.mejo.2021.105159

    Article  Google Scholar 

  39. Alaybeyoglu, E., Atasoyu, M., & Kuntman, H. (2015). Frequency agile filter structure improved by MOS-only technique. 2015 38th International Conference on Telecommunications and Signal Processing, TSP 2015. https://doi.org/10.1109/TSP.2015.7296393

  40. Alaybeyoglu, E., Ozenli, D., & Kuntman, H. (2022). An Electronically Tunable CCII Based Low Pass Filter for Analog Baseband Applications. https://doi.org/10.23919/eleco54474.2021.9677708

  41. Martínez, P. A., Sabadell, J., Aldea, C., & Celma, S. (1999). Variable frequency sinusoidal oscillators based on CCII+. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46(11), 1386–1390. https://doi.org/10.1109/81.802841

    Article  Google Scholar 

  42. Imran, A., Hasan, M., Islam, A., & Abbasi, S. A. (2012). Optimized Design of a 32-nm CNFET-Based Low-Power Ultrawideband CCII. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 11(6), 1100–1109.

    Article  Google Scholar 

  43. Verma, V. K., & Ranjan, R. K. (2021). Design of Active PWM Control Driver Circuit for Torquer System Using CCII. IEEE Access, 9, 75426–75434. https://doi.org/10.1109/ACCESS.2021.3081581

    Article  Google Scholar 

  44. Chaji, G. R., & Nathan, A. (2005). A fast settling current driver based on the CCII for AMOLED displays. IEEE/OSA Journal of Display Technology, 1(2), 283–288. https://doi.org/10.1109/JDT.2005.858934

    Article  Google Scholar 

  45. Ferri, G., De Marcellis, A., Di Carlo, C., Stornelli, V., Flammini, A., Depari, A., & Sisinni, E. (2009). A CCII-based low-voltage low-power read-out circuit for DC-excited resistive gas sensors. IEEE Sensors Journal, 9(12), 2035–2041. https://doi.org/10.1109/JSEN.2009.2033197

    Article  Google Scholar 

  46. Chaisricharoen, R., Chipipop, B., & Sirinaovakul, B. (2010). CMOS CCCII: Structures, characteristics, and considerations. AEU - International Journal of Electronics and Communications, 64(6), 540–557. https://doi.org/10.1016/j.aeue.2009.03.009

    Article  Google Scholar 

  47. BARTHELEMY, H., & Fabre, A. (1996). 20–90 MHZ CURRENT-CONTROLLED SINUSOIDAL OSCILLATOR. In ESSCIRC ’96: Proceedings of the 22nd European Solid-State Circuits Conference (pp. 56–59).

  48. Alami, M., Fabre, A., Jaadoud, A., & Touhami, A. (2007). Simplified BiCMOS current controlled conveyor. In: Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (pp. 383–386). IEEE. https://doi.org/10.1109/ICECS.2007.4511010

  49. Lakys, Y., Fabre, A., & Godara, B. (2009). A new 2nd order variable-state filter: The frequency agile filter. In ECCTD 2009 - European Conference on Circuit Theory and Design Conference Program (pp. 33–36). IEEE. https://doi.org/10.1109/ECCTD.2009.5275137.

  50. Yelten, M. B., Zhu, T., Koziel, S., Franzon, P. D., & Steer, M. B. (2012). Demystifying surrogate modeling for circuits and systems. IEEE Circuits and Systems Magazine, 12(1), 45–63. https://doi.org/10.1109/MCAS.2011.2181095

    Article  Google Scholar 

  51. Afacan, E., Berkol, G., Dundar, G., Pusane, A. E., & Baskaya, F. (2016). An analog circuit synthesis tool based on efficient and reliable yield estimation. Microelectronics Journal, 54, 14–22. https://doi.org/10.1016/j.mejo.2016.05.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Ozenli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaybeyoglu, E., Ozenli, D. & Kuntman, H. An electronically tunable active-C based analog baseband filter for multi-standard applications. Analog Integr Circ Sig Process 113, 185–196 (2022). https://doi.org/10.1007/s10470-022-02078-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02078-z

Keywords

Navigation