Skip to main content
Log in

Synchronization of hyperchaotic Wang-Liu system with experimental implementation on FPAA and FPGA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the synchronization of hyperchaotic Wang-Liu system by using the Pecora-Carroll complete replacement method. One of the most important features of this method is no need for a controller on the slave system which is the basic requirement of other synchronization methods. Initially in this study, dynamic analyses are given to describe the structure of the system. Then, the synchronization is investigated and master and slave systems that have two different dynamics are synchronized. At this point, the hyperchaotic master system forces the quasi-periodic slave system to behave as itself and they demonstrate the same hyperchaotic dynamics after a while. Besides the simulations, synchronization of the two systems is also verified by the experimental realization. FPAA and FPGA implementations of hyperchaos synchronization are provided and results are considered. In the end, it is specified that the experimental results are well-coincides with the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Science, 20(2), 130–141. https://doi.org/10.1175/1520-0469(1963)020%3c0130:dnf%3e2.0.co;2

    Article  MATH  MathSciNet  Google Scholar 

  2. Rossler, O. E. (1979). An equation for hyperchaos. Physics Letters A. https://doi.org/10.1016/0375-9601(79)90150-6

    Article  MATH  MathSciNet  Google Scholar 

  3. Chua, L. O., & Kobayashi, K. (1986). Hyperchaos: Laboratory experiment and numerical confirmation. IEEE Transactions on Circuits and Systems, 33(11), 1143–1147. https://doi.org/10.1109/TCS.1986.1085862

    Article  MathSciNet  Google Scholar 

  4. Wang, X., & Wang, M. (2008). A hyperchaos generated from Lorenz system. Physica A: Statistical Mechanics and its Applications, 387(14), 3751–3758. https://doi.org/10.1016/j.physa.2008.02.020

    Article  MathSciNet  Google Scholar 

  5. Wang, F. Q., & Liu, C. X. (2006). Hyperchaos evolved from the Liu chaotic system. Chinese Physics, 15(5), 963–968. https://doi.org/10.1088/1009-1963/15/5/016

    Article  Google Scholar 

  6. Gao, T., Chen, Z., Yuan, Z., & Chen, G. (2006). A hyperchaos generated from Chen’s system. International Journal of Modern Physics C, 17(4), 471–478. https://doi.org/10.1142/S0129183106008625

    Article  MATH  Google Scholar 

  7. Vaidyanathan, S., Dolvis, L. G., Jacques, K., Lien, C. H., & Sambas, A. (2019). A new five-dimensional four-wing hyperchaotic system with hidden attractor, its electronic circuit realisation and synchronisation via integral sliding mode control. International Journal of Modelling, Identification and Control, 32(1), 30–45. https://doi.org/10.1504/IJMIC.2019.101959

    Article  Google Scholar 

  8. Yujun, N., Xingyuan, W., Mingjun, W., & Huaguang, Z. (2010). A new hyperchaotic system and its circuit implementation. Communications in Nonlinear Science and Numerical Simulation, 15(11), 3518–3524. https://doi.org/10.1016/j.cnsns.2009.12.005

    Article  Google Scholar 

  9. Brahim, A. H., Pacha, A. A., & Said, N. H. (2021). A new image encryption scheme based on a hyperchaotic system & multi specific S-boxes. The International Journal of Information Security. https://doi.org/10.1080/19393555.2021.1943572

    Article  Google Scholar 

  10. Chen, X., et al. (2020). Pseudorandom number generator based on three kinds of four-wing memristive hyperchaotic system and its application in image encryption. Complexity. https://doi.org/10.1155/2020/8274685

    Article  Google Scholar 

  11. Setoudeh, F., & Sedigh, A. K. (2021). Nonlinear analysis and minimum L2-norm control in memcapacitor-based hyperchaotic system via online particle swarm optimization. Chaos, Solitons & Fractals, 151, 111214. https://doi.org/10.1016/J.CHAOS.2021.111214

    Article  MATH  Google Scholar 

  12. Xiu, C., Zhou, R., Zhao, S., & Xu, G. (2021). Memristive hyperchaos secure communication based on sliding mode control. Nonlinear Dynamics. https://doi.org/10.1007/s11071-021-06302-9

    Article  Google Scholar 

  13. Chen, Y., Zhang, H., & Kong, X. (2021). A new fractional-order hyperchaotic system and its adaptive tracking control. Discrete Dynamics in Nature and Society. https://doi.org/10.1155/2021/6625765

    Article  MATH  Google Scholar 

  14. Hui, Y., Liu, H., & Fang, P. (2021). A DNA image encryption based on a new hyperchaotic system. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-021-10526-7

    Article  Google Scholar 

  15. Wang, X., & Zhao, M. (2021). An image encryption algorithm based on hyperchaotic system and DNA coding. Optics & Laser Technology, 143, 107316. https://doi.org/10.1016/J.OPTLASTEC.2021.107316

    Article  Google Scholar 

  16. Zhou, Y., Bi, M., Zhuo, X., Lv, Y., Yang, X., & Hu, W. (2021). Physical layer dynamic key encryption in OFDM-PON system based on cellular neural network. IEEE Photonics Journal. https://doi.org/10.1109/JPHOT.2021.3059369

    Article  Google Scholar 

  17. Luo, J., Qu, S., Chen, Y., Chen, X., & Xiong, Z. (2021). Synchronization, circuit and secure communication implementation of a memristor-based hyperchaotic system using single input controller. Chinese Journal of Physics, 71, 403–417. https://doi.org/10.1016/j.cjph.2021.03.009

    Article  MathSciNet  Google Scholar 

  18. Bian, Y., & Yu, W. (2021). A secure communication method based on 6-D hyperchaos and circuit implementation. Telecommunication Systems, 77, 73. https://doi.org/10.1007/s11235-021-00790-1

    Article  Google Scholar 

  19. Yu, W., et al. (2019). Design of a new seven-dimensional hyperchaotic circuit and its application in secure communication. IEEE Access, 7, 125586–125608. https://doi.org/10.1109/ACCESS.2019.2935751

    Article  Google Scholar 

  20. Benkouider, K., Bouden, T., Yalcin, M. E., & Vaidyanathan, S. (2020). A new family of 5D, 6D, 7D and 8D hyperchaotic systems from the 4D hyperchaotic Vaidyanathan system, the dynamic analysis of the 8D hyperchaotic system with six positive Lyapunov exponents and an application to secure communication design. International Journal of Modelling, Identification and Control, 35(3), 241–257. https://doi.org/10.1504/IJMIC.2020.114191

    Article  Google Scholar 

  21. Singh, S., Han, S., & Lee, S. M. (2021). Adaptive single input sliding mode control for hybrid-synchronization of uncertain hyperchaotic Lu systems. Journal of the Franklin Institute. https://doi.org/10.1016/J.JFRANKLIN.2021.07.037

    Article  MATH  Google Scholar 

  22. Vaidyanathan, S., & Rasappan, S. (2011). Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Communications in Computer and Information Science, 198, 10–17. https://doi.org/10.1007/978-3-642-22555-0_2

    Article  Google Scholar 

  23. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in Chaotic systems.

  24. Lai, Q., Wan, Z., Kuate, P. D. K., & Fotsin, H. (2021). Dynamical analysis, circuit implementation and synchronization of a new memristive hyperchaotic system with coexisting attractors. Modern Physics Letters B. https://doi.org/10.1142/S0217984921501876

    Article  MATH  MathSciNet  Google Scholar 

  25. Sajjadi, S. S., Baleanu, D., Jajarmi, A., & Pirouz, H. M. (2020). A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Solitons and Fractals. https://doi.org/10.1016/j.chaos.2020.109919

    Article  MATH  MathSciNet  Google Scholar 

  26. Vaidyanathan, S., Pham, V. T., Volos, C., & Sambas, A. (2018). A novel 4-D hyperchaotic rikitake dynamo system with hidden attractor, its properties, synchronization and circuit design. In Studies in systems, decision and control (Vol. 133, pp. 345–364). Berlin: Springer.

    Google Scholar 

  27. Liao, T. L., Wan, P. Y., & Yan, J. J. (2022). Design and synchronization of chaos-based true random number generators and its FPGA implementation. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3142536

    Article  Google Scholar 

  28. Wang, P., Wen, G., Yu, X., Yu, W., & Huang, T. (2019). Synchronization of multi-layer networks: From node-to-node synchronization to complete synchronization. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(3), 1141–1152. https://doi.org/10.1109/TCSI.2018.2877414

    Article  Google Scholar 

  29. Al-Obeidi, A. S., & Al-Azzawi, S. F. (2019). Projective synchronization for a cass of 6-D hyperchaotic lorenz system. Indonesian Journal of Electrical Engineering and Computer Science, 16(2), 692–700. https://doi.org/10.11591/IJEECS.V16.I2.PP692-700

    Article  Google Scholar 

  30. Wu, X., Fu, Z., & Kurths, J. (2015). A secure communication scheme based generalized function projective synchronization of a new 5D hyperchaotic system. Physica Scripta. https://doi.org/10.1088/0031-8949/90/4/045210

    Article  Google Scholar 

  31. Gularte, K. H. M., Alves, L. M., Vargas, J. A. R., Alfaro, S. C. A., De Carvalho, G. C., & Romero, J. F. A. (2021). Secure communication based on hyperchaotic underactuated projective synchronization. IEEE Access, 9, 166117–166128. https://doi.org/10.1109/ACCESS.2021.3134829

    Article  Google Scholar 

  32. Zhou, C., Yang, C., Xu, D., & Chen, C. Y. (2019). Dynamic analysis and finite-time synchronization of a new hyperchaotic system with coexisting attractors. IEEE Access, 7, 52896–52902. https://doi.org/10.1109/ACCESS.2019.2911486

    Article  Google Scholar 

  33. Sangpet, T., & Kuntanapreeda, S. (2020). Finite-time synchronization of hyperchaotic systems based on feedback passivation. Chaos, Solitons & Fractals, 132, 109605. https://doi.org/10.1016/J.CHAOS.2020.109605

    Article  MATH  MathSciNet  Google Scholar 

  34. Al-Obeidi, A. S., Al-Azzawi, S. F., Hamad, A. A., Thivagar, M. L., Meraf, Z., & Ahmad, S. (2021). A novel of new 7D Hyperchaotic system with self-excited attractors and its hybrid synchronization. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2021/3081345

    Article  Google Scholar 

  35. Sarasu, P., & Sundarapandian, V. (2011). The generalized projective synchronization of hyperchaotic lorenz and hyperchaotic Qi systems via active control. International Journal of Soft Computing, 6(5), 216–223. https://doi.org/10.3923/IJSCOMP.2011.216.223

    Article  Google Scholar 

  36. Pecora, L. M., Carroll, T. L., Johnson, G. A., Mar, D. J., & Heagy, J. F. (1997). Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos, 7(4), 520–543. https://doi.org/10.1063/1.166278

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, F., Wang, R., Iu, H. H. C., Liu, C., & Fernando, T. (2019). A novel multi-shape chaotic attractor and its FPGA implementation. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(12), 2062–2066. https://doi.org/10.1109/TCSII.2019.2907709

    Article  Google Scholar 

  38. Kiliç, R., Alçi, M., & Günay, E. (2004). A SC-CNN-based chaotic masking system with feedback. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14(1), 245–256. https://doi.org/10.1142/S0218127404009120

    Article  MATH  Google Scholar 

  39. Günay, E., & Altun, K. (2018). Lorenz-like system design using cellular neural networks. Turkish Journal of Electrical Engineering and Computer Science, 26(4), 1812–1819. https://doi.org/10.3906/elk-1706-309

    Article  Google Scholar 

  40. Salih, T. A. (2021). Design and implementation of a low power consumption of ASK, FSK PSK, and QSK Modulators based on FPAA technology. International Journal on Advanced Science, Engineering and Information Technology, 11(4), 1288. https://doi.org/10.18517/ijaseit.11.4.11299

    Article  MathSciNet  Google Scholar 

  41. Diab, M. S., & Mahmoud, S. A. (2020). Field programmable analog arrays for implementation of generalized nth-order operational transconductance amplifier-C elliptic filters. ETRI Journal, 42(4), 534–548. https://doi.org/10.4218/ETRIJ.2020-0104

    Article  Google Scholar 

  42. Vaidyanathan, S., et al. (2021). A 5-D multi-stable hyperchaotic two-disk dynamo system with no equilibrium point: Circuit design, FPGA realization and applications to TRNGs and image encryption. IEEE Access, 9, 81352–81369. https://doi.org/10.1109/ACCESS.2021.3085483

    Article  Google Scholar 

  43. Yu, F., et al. (2020). Multistability analysis, coexisting multiple attractors, and FPGA implementation of Yu-Wang four-wing chaotic system. Mathematical Problems in Engineering. https://doi.org/10.1155/2020/7530976

    Article  MATH  MathSciNet  Google Scholar 

  44. Yılmaz, G., & Günay, E. (2021). FPAA Implementation of Wang-Liu system. In 2021 13th international conference on electrical and electronics engineering (ELECO) (pp. 167–171). IEEE. https://doi.org/10.23919/ELECO54474.2021.9677754.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülnur Yılmaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, G., Altun, K. & Günay, E. Synchronization of hyperchaotic Wang-Liu system with experimental implementation on FPAA and FPGA. Analog Integr Circ Sig Process 113, 145–161 (2022). https://doi.org/10.1007/s10470-022-02073-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02073-4

Keywords

Navigation