Skip to main content
Log in

Optimization techniques for analog and RF circuit designs: an overview

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Optimizations have gained much consideration from the researchers working in the domains of analog and radio frequency (RF), recently. Dealing with highly nonlinear behavior of active components and aiming to meet design specifications are common issues in all nonlinear circuit designs. As a consequence and accordingly, many studies have been conducted on diverse optimization methods and algorithms for tackling the design problems and meeting optimal solutions with high accuracy. The main purpose of this article is to provide a comprehensive and systematic literature review for the optimization approaches applied by the researchers for designing various analog and microwave circuits. We focus on considering the existing optimization methods from the newly published optimization methods in the last decade. Thus, this study can guide and enlighten complementary metal-oxide-semiconductor analog and RF microwave circuit designers to consider optimization methods commonly used in both areas and to expand conventional performance figures used in their area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barros, M. F. M., Guilherme, J. M. C., & Horta, N. C. G. (2010). Optimization of analog circuits and systems-applications (pp. 139–186). Berlin: Springer. https://doi.org/10.1007/978-3-642-12346-7_6.

    Book  MATH  Google Scholar 

  2. Thome, F., Ture, E., Iannucci, R., Leuther, A., Schäfer, F., Navarrini, A., et al. (2020). Frequency multiplier and mixer MMICs based on a metamorphic HEMT technology including schottky diodes. IEEE Access,. https://doi.org/10.1109/ACCESS.2020.2965823.

    Article  Google Scholar 

  3. Florian, C., Cappello, T., Santarelli, A., Niessen, D., Filicori, F., & Popović, Z. (2017). A prepulsing technique for the characterization of GaN power amplifiers with dynamic supply under controlled thermal and trapping states. IEEE Transactions on Microwave Theory and Techniques, 65(12), 5046–5062. https://doi.org/10.1109/TMTT.2017.2723003.

    Article  Google Scholar 

  4. Hewlett, J. D., Wilamowski, B. M., & Dundar, G. (2008). Optimization using a modified second-order approach with evolutionary enhancement. IEEE Transactions on Industrial Electronics, 55(9), 3374–3380. https://doi.org/10.1109/TIE.2008.927987.

    Article  Google Scholar 

  5. Vichik, S., Arcak, M., & Borrelli, F. (2016). Stability of an analog optimization circuit for quadratic programming. Systems & Control Letters, 88, 68–74. https://doi.org/10.1016/j.sysconle.2015.11.006.

    Article  MathSciNet  MATH  Google Scholar 

  6. İslamoğlu, G., Çakici, T. O., Afacan, E., & Dündar, G. (2019). Artificial neural network assisted analog IC sizing tool. In 2019 16th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), pp. 9–12. https://doi.org/10.1109/SMACD.2019.8795293.

  7. Póvoa, R., Bastos, I., Lourenço, N. M. T., & Horta, N. (2016). Automatic synthesis of RF front-end blocks using multi-objective evolutionary techniques. Integration, 52, 243–252.

    Article  Google Scholar 

  8. Mallick, S., Kar, R., Mandal, D., & Ghoshal, S. P. (2017). Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization. International Journal of Machine Learning and Cybernetics, 8(1), 309–331. https://doi.org/10.1007/s13042-014-0324-3.

    Article  Google Scholar 

  9. Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE Transactions, 36, 1067–1081. https://doi.org/10.1080/07408170490500654.

    Article  Google Scholar 

  10. Kouhalvandi, L., Ceylan, O., & Ozoguz, S. (2019). A review on optimization methods for designing RF power amplifiers. In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), pp. 375–378.

  11. Joung, J., Ho, C. K., Adachi, K., & Sun, S. (2015). A survey on power-amplifier-centric techniques for spectrum- and energy-efficient wireless communications. IEEE Communications Surveys Tutorials, 17(1), 315–333. https://doi.org/10.1109/COMST.2014.2350018.

    Article  Google Scholar 

  12. Sajedin, M., Elfergani, I., Rodriguez, J., Abd-Alhameed, R., & Fernandez Barciela, M. (2019). A survey on RF and microwave doherty power amplifier for mobile handset applications. Electronics, 8, 717. https://doi.org/10.3390/electronics8060717.

    Article  Google Scholar 

  13. Chen, P., Merrick, B. M., & Brazil, T. J. (2015). Bayesian optimization for broadband high-efficiency power amplifier designs. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4263–4272. https://doi.org/10.1109/TMTT.2015.2495360.

    Article  Google Scholar 

  14. Yarman, B. S. (2008). Simplified real frequency technique (pp. 183–224). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8418-8_9.

    Book  Google Scholar 

  15. Bandler, J. W., Cheng, Q. S., Dakroury, S. A., Mohamed, A. S., Bakr, M. H., Madsen, K., et al. (2004). Space mapping: The state of the art. IEEE Transactions on Microwave Theory and Techniques, 52(1), 337–361. https://doi.org/10.1109/TMTT.2003.820904.

    Article  Google Scholar 

  16. Tu, S., Cheng, Q. S., Zhang, Y., Bandler, J. W., & Nikolova, N. K. (2013). Space mapping optimization of handset antennas exploiting thin-wire models. IEEE Transactions on Antennas and Propagation, 61(7), 3797–3807. https://doi.org/10.1109/TAP.2013.2254695.

    Article  MathSciNet  MATH  Google Scholar 

  17. Koziel, S., & Bekasiewicz, A. (2017). Implicit space mapping with substrate segmentation for reliable antenna optimization. In 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, pp. 349–350. https://doi.org/10.1109/APUSNCURSINRSM.2017.8072217.

  18. Zhang, Qi-Jun, Gupta, K. C., & Devabhaktuni, V. K. (2003). Artificial neural networks for RF and microwave design—from theory to practice. IEEE Transactions on Microwave Theory and Techniques, 51(4), 1339–1350. https://doi.org/10.1109/TMTT.2003.809179.

    Article  Google Scholar 

  19. Cai, J., King, J. B., Merrick, B. M., & Brazil, T. J. (2013). Pade-approximation-based behavioral modeling. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4418–4427. https://doi.org/10.1109/TMTT.2013.2287677.

    Article  Google Scholar 

  20. Sudret, B., Marelli, S., & Wiart, J. (2017). Surrogate models for uncertainty quantification: An overview. In 2017 11th European Conference on Antennas and Propagation (EUCAP), pp. 793–797. https://doi.org/10.23919/EuCAP.2017.7928679.

  21. Iuliano, E. (2019). Efficient design optimization assisted by sequential surrogate models. International Journal of Aerospace Engineering, 2019, 1–34.

    Article  Google Scholar 

  22. Feng, F., Na, W., Liu, W., Yan, S., Zhu, L., Ma, J., et al. (2020). Multifeature-assisted neuro-transfer function surrogate-based EM optimization exploiting trust-region algorithms for microwave filter design. IEEE Transactions on Microwave Theory and Techniques, 68(2), 531–542.

    Article  Google Scholar 

  23. Yelten, M. B., Zhu, T., Koziel, S., Franzon, P. D., & Steer, M. B. (2012). Demystifying surrogate modeling for circuits and systems. IEEE Circuits and Systems Magazine, 12(1), 45–63.

    Article  Google Scholar 

  24. Xhafa, X., & Yelten, M. (2020). Design of a tunable LNA and its variability analysis through surrogate modeling. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields,. https://doi.org/10.1002/jnm.2724.

    Article  Google Scholar 

  25. Passos, F., Roca, E., Castro-López, R., & Fernández, F. V. (2018). A comparison of automated RF circuit design methodologies: Online versus offline passive component design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(11), 2386–2394. https://doi.org/10.1109/TVLSI.2018.2859827.

    Article  Google Scholar 

  26. Liu, B., Zhao, D., Reynaert, P., & Gielen, G. G. E. (2014). GASPAD: A general and efficient mm-wave integrated circuit synthesis method based on surrogate model assisted evolutionary algorithm. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(2), 169–182. https://doi.org/10.1109/TCAD.2013.2284109.

    Article  Google Scholar 

  27. Palmers, P., McConnaghy, T., Steyaert, M., & Gielen, G. (2009). Massively multi-topology sizing of analog integrated circuits. In 2009 Design, Automation Test in Europe Conference Exhibition, pp. 706–711. https://doi.org/10.1109/DATE.2009.5090756.

  28. Koziel, S., & Bekasiewicz, A. (2015). Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4019–4026. https://doi.org/10.1109/TMTT.2015.2490662.

    Article  Google Scholar 

  29. Ullah, U., Koziel, S., & Mabrouk, I. B. (2020). Rapid redesign and bandwidth/size tradeoffs for compact wideb and circular polarization antennas using inverse surrogates and fast EM-based parameter tuning. IEEE Transactions on Antennas and Propagation, 68(1), 81–89. https://doi.org/10.1109/TAP.2019.2935817.

    Article  Google Scholar 

  30. Martins, R., Lourenço, N., Passos, F., Póvoa, R., Canelas, A., Roca, E., et al. (2019). Two-step RF IC block synthesis with preoptimized inductors and full layout generation in-the-loop. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(6), 989–1002. https://doi.org/10.1109/TCAD.2018.2834394.

    Article  Google Scholar 

  31. Feng, F., Zhang, C., Ma, J., & Zhang, Q. (2016). Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions. IEEE Transactions on Microwave Theory and Techniques, 64(1), 60–77.

    Article  Google Scholar 

  32. Angiulli, G., Cacciola, M., & Versaci, M. (2007). Microwave devices and antennas modelling by support vector regression machines. IEEE Transactions on Magnetics, 43(4), 1589–1592.

    Article  Google Scholar 

  33. Chávez-Hurtado, J. L., & Rayas-Sánchez, J. E. (2016). Polynomial-based surrogate modeling of RF and microwave circuits in frequency domain exploiting the multinomial theorem. IEEE Transactions on Microwave Theory and Techniques, 64(12), 4371–4381.

    Article  Google Scholar 

  34. Afacan, E. (2019). Inversion coefficient optimization based analog/RF circuit design automation. Microelectronics Journal, 83, 86–93. https://doi.org/10.1016/j.mejo.2018.11.015.

    Article  Google Scholar 

  35. González-Echevarría, R., Castro-López, R., Roca, E., Fernández, F. V., Sieiro, J., Vidal, N., et al. (2014). Automated generation of the optimal performance trade-offs of integrated inductors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(8), 1269–1273. https://doi.org/10.1109/TCAD.2014.2316092.

    Article  Google Scholar 

  36. Sorkhabi, S. E., & Zhang, L. (2017). Automated topology synthesis of analog and RF integrated circuits: A survey. Integration, 56, 128–138. https://doi.org/10.1016/j.vlsi.2016.10.017.

    Article  Google Scholar 

  37. Berkol, G., Afacan, E., Dündar, G., & Fernandez, E. V. (2016). A hierarchical design automation concept for analog circuits. In 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 133–136. https://doi.org/10.1109/ICECS.2016.7841150.

  38. Liu, B., Deferm, N., Zhao, D., Reynaert, P., & Gielen, G. G. E. (2012). An efficient high-frequency linear RF amplifier synthesis method based on evolutionary computation and machine learning techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(7), 981–993. https://doi.org/10.1109/TCAD.2012.2187207.

    Article  Google Scholar 

  39. Mandal, S. K., Sural, S., & Patra, A. (2008). ANN- and PSO-based synthesis of on-chip spiral inductors for RF ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(1), 188–192. https://doi.org/10.1109/TCAD.2007.907284.

    Article  Google Scholar 

  40. Liu, B., Zhao, D., Reynaert, P., & Gielen, G. G. E. (2011). Synthesis of integrated passive components for high-frequency RF ICs based on evolutionary computation and machine learning techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(10), 1458–1468. https://doi.org/10.1109/TCAD.2011.2162067.

    Article  Google Scholar 

  41. Kouhalvandi, L., Pirola, M., & Ozoguz, S. (2020). Automated two-step power amplifier design with pre-constructed artificial neural network. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 617–620.

  42. Kouhalvandi, L., Ceylan, O., & Ozoguz, S. (2020). Automated deep neural learning-based optimization for high performance high power amplifier designs. IEEE Transactions on Circuits and Systems I: Regular Papers. https://doi.org/10.1109/TCSI.2020.3008947.

  43. Wilamowski, B. M., Cotton, N. J., Kaynak, O., & Dundar, G. (2008). Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks. IEEE Transactions on Industrial Electronics, 55(10), 3784–3790. https://doi.org/10.1109/TIE.2008.2003319.

    Article  Google Scholar 

  44. Hasani, R. M., Haerle, D., Baumgartner, C. F., Lomuscio, A. R., & Grosu, R. (2017). Compositional neural-network modeling of complex analog circuits. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2235–2242. https://doi.org/10.1109/IJCNN.2017.7966126.

  45. Aygun, S., Kouhalvandi, L., Gunes, E. O., & Ozoguz, S. (2020). Inspecting distortion in the power amplifiers with the aid of neural networks. In 2020 22nd International Conference on Advanced Communication Technology (ICACT), pp. 448–453.

  46. Liu, T., Zhang, W., & Yu, Z. (2005). Modeling of spiral inductors using artificial neural network. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, Vol. 4, 2353–2358. https://doi.org/10.1109/IJCNN.2005.1556269

  47. Zhang, L., & Chan, M. (2017). Artificial neural network design for compact modeling of generic transistors. Journal of Computational Electronics, 16(3), 825–832. https://doi.org/10.1007/s10825-017-0984-9.

    Article  Google Scholar 

  48. Liu, B., Gielen, G., & Fernandez, F. (2014). Automated design of analog and high-frequency circuits. A Computational Intelligence Approach,. https://doi.org/10.1007/978-3-642-39162-0.

    Article  MATH  Google Scholar 

  49. Jafari, A., Sadri, S., & Zekri, M. (2010). Design optimization of analog integrated circuits by using artificial neural networks. In 2010 International Conference of Soft Computing and Pattern Recognition, pp. 385–388. https://doi.org/10.1109/SOCPAR.2010.5686736.

  50. Rosa, J. P. S., Guerra, D. J. D., Horta, N. C. G., Martins, R. M. F., & Lourenço, N. C. C. (2020). Using ANNs to size analog integrated circuits (pp. 45–66). Cham: Springer. https://doi.org/10.1007/978-3-030-35743-6_4.

    Book  Google Scholar 

  51. Pochmara, J. (2007). Modeling power amplifier nonlinearities with artifical neural network. In 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems, pp. 449–453. https://doi.org/10.1109/MIXDES.2007.4286202.

  52. Uzundurukan, E., Ali, A. M., Dalveren, Y., & Kara, A. (2020). Performance analysis of modular RF front end for RF fingerprinting of bluetooth devices. Wireless Personal Communications,. https://doi.org/10.1007/s11277-020-07162-z.

    Article  Google Scholar 

  53. Singh, S., & Chopra, P. K. (2016). Artificial neural network approach for LNA design of GPS receiver. Optical Memory and Neural Networks, 25(4), 236–242. https://doi.org/10.3103/S1060992X16040111.

    Article  Google Scholar 

  54. Yu, H., Chalamalasetty, H., & Swaminathan, M. (2019). Modeling of voltage-controlled oscillators including I/O behavior using augmented neural networks. IEEE Access, 7, 38973–38982. https://doi.org/10.1109/ACCESS.2019.2905136.

    Article  Google Scholar 

  55. Ceperic, V., Baric, A., & Pejcinovic, B. (2004). Artificial neural network in modelling of voltage controlled oscillators with jitter. InProceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521), 1, 347–350. https://doi.org/10.1109/MELCON.2004.1346871.

  56. Gecgel, S., Goztepe, C., & Karabulut Kurt, G. (2020). Transmit antenna selection for large-scale MIMO GSM with machine learning. IEEE Wireless Communications Letters, 9(1), 113–116. https://doi.org/10.1109/LWC.2019.2944179.

    Article  Google Scholar 

  57. Simsek, M. (2017). Efficient neural network modeling of reconfigurable microstrip patch antenna through knowledge-based three-step strategy. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 30(3–4), e2160. https://doi.org/10.1002/jnm.2160.

    Article  Google Scholar 

  58. Garcia-Santiago, X., Schneider, P.-I., Rockstuhl, C., & Burger, S. (2018). Shape design of a reflecting surface using bayesian optimization. Journal of Physics: Conference Series, 963, 012003. https://doi.org/10.1088/1742-6596/963/1/012003.

    Article  Google Scholar 

  59. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016). Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1), 148–175. https://doi.org/10.1109/JPROC.2015.2494218.

    Article  Google Scholar 

  60. Kouhalvandi, L., Ceylan, O., & Ozoguz, S. (2019). Automated RF power amplifier optimization and design: From lumped elements to distributed elements. In 2019 27th Telecommunications Forum (TELFOR), pp. 1–4. https://doi.org/10.1109/TELFOR48224.2019.8971160.

  61. Lyu, W., Xue, P., Yang, F., Yan, C., Hong, Z., Zeng, X., et al. (2018). An efficient Bayesian optimization approach for automated optimization of analog circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(6), 1954–1967. https://doi.org/10.1109/TCSI.2017.2768826.

    Article  Google Scholar 

  62. Lyu, W., Yang, F., Yan, C., Zhou, D., & Zeng, X. (2018). Batch Bayesian optimization via multi-objective acquisition ensemble for automated analog circuit design. In Dy, J., Krause, A. (Eds.) Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, PMLR. Stockholmsmässan, Stockholm Sweden, pp. 3306–3314. http://proceedings.mlr.press/v80/lyu18a.html.

  63. Knudde, N., Couckuyt, I., Spina, D., Łukasik, K., Barmuta, P., Schreurs, D., & Dhaene, T. (2018). Data-efficient bayesian optimization with constraints for power amplifier design. In 2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pp. 1–3. https://doi.org/10.1109/NEMO.2018.8503107.

  64. Chan, C., & Goggans, P. M. (2014). Multiobjective design of linear antenna arrays using bayesian inference framework. IEEE Transactions on Antennas and Propagation, 62(11), 5524–5530. https://doi.org/10.1109/TAP.2014.2350521.

    Article  MathSciNet  MATH  Google Scholar 

  65. Li, J., Khan, T. A., Meng, X., Chen, J., Peng, G., & Zhang, A. (2019). Wideband radar cross-section reduction of microstrip patch antenna using coding metasurface. IET Microwaves, Antennas Propagation, 13(10), 1719–1725. https://doi.org/10.1049/iet-map.2018.6150.

    Article  Google Scholar 

  66. Dang, D., & Seo, C. (2019). Compact high gain resonant cavity antenna with via hole feed patch and hybrid parasitic ring superstrate. IEEE Access, 7, 161963–161974. https://doi.org/10.1109/ACCESS.2019.2950726.

    Article  Google Scholar 

  67. Tran, H. H., & Park, H. C. (2019). Wideband reconfigurable antenna with simple biasing circuit and tri-polarization diversity. IEEE Antennas and Wireless Propagation Letters, 18(10), 2001–2005. https://doi.org/10.1109/LAWP.2019.2936211.

    Article  Google Scholar 

  68. Na, W. C., & Zhang, Q. J. (2014). Automated knowledge-based neural network modeling for microwave applications. IEEE Microwave and Wireless Components Letters, 24(7), 499–501. https://doi.org/10.1109/LMWC.2014.2316251.

    Article  Google Scholar 

  69. Avolio, G., Raffo, A., Marchetti, M., Bosi, G., Vadalà, V., & Vannini, G. (2019). GaN FET load-pull data in circuit simulators: A comparative study. In 2019 14th European Microwave Integrated Circuits Conference (EuMIC), pp. 80–83. https://doi.org/10.23919/EuMIC.2019.8909451.

  70. Du, Y., Du, L., Gu, X., Du, J., Wang, X. S., Hu, B., et al. (2019). An analog neural network computing engine using CMOS-compatible charge-trap-transistor (CTT). IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(10), 1811–1819. https://doi.org/10.1109/TCAD.2018.2859237.

    Article  Google Scholar 

  71. Jin, J., Zhang, C., Feng, F., Na, W., Ma, J., & Zhang, Q. (2019). Deep neural network technique for high-dimensional microwave modeling and applications to parameter extraction of microwave filters. IEEE Transactions on Microwave Theory and Techniques, 67(10), 4140–4155.

    Article  Google Scholar 

  72. Settaluri, K., Haj-Ali, A., Huang, Q., Hakhamaneshi, K., & Nikolic, B. (2020). Autockt: Deep reinforcement learning of analog circuit designs. In 2020 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 490–495.

  73. Hongyo, R., Egashira, Y., Hone, T. M., & Yamaguchi, K. (2019). Deep neural network-based digital predistorter for doherty power amplifiers. IEEE Microwave and Wireless Components Letters, 29(2), 146–148.

    Article  Google Scholar 

  74. Sun, J., Wang, J., Guo, L., Yang, J., & Gui, G. (2020). Adaptive deep learning aided digital predistorter considering dynamic envelope. IEEE Transactions on Vehicular Technology, 69(4), 4487–4491.

    Article  Google Scholar 

  75. Sun, J., Shi, W., Yang, Z., Yang, J., & Gui, G. (2019). Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems. IEEE Transactions on Vehicular Technology, 68(11), 10348–10356.

    Article  Google Scholar 

  76. Batur, O. Z., Dündar, G., & Koca, M. (2016). MATLAB VHDL-AMS co-simulation environment for IR-UWB transceiver design. In 2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), pp. 1–4. https://doi.org/10.1109/SMACD.2016.7520737.

  77. Arndt, F. (2015). Hybrid methods—efficient EM CAD and optimization of microwave components and antennas. In 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pp. 1–3. https://doi.org/10.1109/NEMO.2015.7415067.

  78. Arndt, F., Brandt, J., Catina, V., & Wessel, W. (2017). Efficient hybrid MM/FE/MoM EM CAD and optimization of slot-array antennas including feed-networks. In 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), pp. 1–5. https://doi.org/10.1109/COMCAS.2017.8244816.

  79. Ma, Y., Li, B., Wu, Z., Wu, H., & Chen, Z. (2018). A co-simulation method of power amplifier for reliability optimization. In 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), pp. 1–2. https://doi.org/10.1109/EDSSC.2018.8487110.

  80. Sangwan, V., Kapoor, D., Tan, C. M., Lin, C. H., & Chiu, H. (2019). High-frequency electromagnetic simulation and optimization for GaN-HEMT power amplifier IC. IEEE Transactions on Electromagnetic Compatibility, 61(2), 564–571. https://doi.org/10.1109/TEMC.2018.2820202.

    Article  Google Scholar 

  81. Kouhalvandi, L., Ceylan, O., & Yagci, H. B. (2018). Power amplifier design optimization with simultaneous cooperation of EDA tool and numeric analyzer. In 2018 18th Mediterranean Microwave Symposium (MMS), pp. 202–205. https://doi.org/10.1109/MMS.2018.8611955.

  82. Kouhalvandi, L., Ceylan, O., & Ozoguz, S. (2019). Automated matching network modeling and optimization for power amplifier designs. In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), pp. 510–513. https://doi.org/10.23919/ELECO47770.2019.8990407.

  83. Guerrieri, S. D., Bonani, F., & Ghione, G. (2019). Linking X parameters to physical simulations for design-oriented large-signal device variability modeling. In 2019 IEEE MTT-S International Microwave Symposium (IMS), pp. 204–207. https://doi.org/10.1109/MWSYM.2019.8700869.

  84. Cortés-Delgadillo, B., Rodríguez-Navas, P. A., Guerrero-Linares, L. I., & de la Rosa, J. M. (2018). Embedding MATLAB optimizers in SIMSIDES for the high-level design of \( \delta \) modulators. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(5), 547–551. https://doi.org/10.1109/TCSII.2018.2820900.

    Article  Google Scholar 

  85. SIMSIDES(simulink-based sigma-delta simulator). Retrieved from December 01, 2020 from http://imse-cnm.csic.es/simsides/.

  86. Barakat, A., Thian, M., & Fusco, V. (2018). A high-efficiency GaN doherty power amplifier with blended class-EF mode and load-pull technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(2), 151–155. https://doi.org/10.1109/TCSII.2017.2677745.

    Article  Google Scholar 

  87. Hasegawa, N., & Shinohara, N. (2017). C-band active-antenna design for effective integration with a GaN amplifier. IEEE Transactions on Microwave Theory and Techniques, 65(12), 4976–4983. https://doi.org/10.1109/TMTT.2017.2721406.

    Article  Google Scholar 

  88. Dasgupta, A., Battikh, A., Neveux, G., Barataud, D., & Chambon, C. (2019). Non-linear modeling and harmonic balance simulations of track and hold amplifier. In 2019 14th European Microwave Integrated Circuits Conference (EuMIC), pp. 72–75. https://doi.org/10.23919/EuMIC.2019.8909634.

  89. Yu, X., Sun, H., Xu, Y., & Hong, W. (2016). C-band 60 W GaN power amplifier MMIC designed with harmonic tuned approach. Electronics Letters, 52(3), 219–221. https://doi.org/10.1049/el.2015.3017.

    Article  Google Scholar 

  90. Nawaz, A. A., Ko, M., Malignaggi, A., Kissinger, D., Albrecht, J. D., & Ulusoy, A. C. (2018). Harmonic tuning of stacked sige power amplifiers using active load pull. IEEE Microwave and Wireless Components Letters, 28(3), 245–247. https://doi.org/10.1109/LMWC.2018.2801027.

    Article  Google Scholar 

  91. Huang, F., Chen, W., Zhang, Q., Li, J., Lv, G., & Feng, Z. (2018). A design methodology of envelope tracking power amplifier based on harmonic impedance tuning. Microwave and Optical Technology Letters, 60, 639–642. https://doi.org/10.1002/mop.31015.

    Article  Google Scholar 

  92. Zhuang, Y., Fei, Z., Chen, A., Huang, Y., Rabbi, K., & Zhou, J. (2018). Design of multioctave high-efficiency power amplifiers using stochastic reduced order models. IEEE Transactions on Microwave Theory and Techniques, 66(2), 1015–1023. https://doi.org/10.1109/TMTT.2017.2750164.

    Article  Google Scholar 

  93. Sun, P., Wei, Y., & Doboli, A. (2007). Flexibility-oriented design methodology for reconfigurable modulators. In 2007 Design, Automation Test in Europe Conference Exhibition, pp. 1–6. https://doi.org/10.1109/DATE.2007.364627.

  94. Enomoto, J., Ishikawa, R., & Honjo, K. (2017). Second harmonic treatment technique for bandwidth enhancement of GaN HEMT amplifier with harmonic reactive terminations. IEEE Transactions on Microwave Theory and Techniques, 65(12), 4947–4952. https://doi.org/10.1109/TMTT.2017.2704931.

    Article  Google Scholar 

  95. Yao, T., Ishikawa, R., Takayama, Y., Honjo, K., Kikuchi, H., Okazaki, T., Ueda, K., & Otobe, E. (2013). Frequency characteristic of power efficiency for 10 W/30 W-class 2GHz band GaN HEMT amplifiers with harmonic reactive terminations. In 2013 Asia-Pacific Microwave Conference Proceedings (APMC), pp. 745–747. https://doi.org/10.1109/APMC.2013.6694917.

  96. Tran, K., & Henderson, R. (2018). Bounded performance technique for broadband amplifier design. In 2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), pp. 1–4. https://doi.org/10.1109/WMCaS.2018.8400650.

  97. Tran, K., Henderson, R., & Gengler, J. (2019). Design of a 1–2.8-GHz 100-W power amplifier with bounded performance technique. IEEE Transactions on Microwave Theory and Techniques, 67(9), 3707–3715. https://doi.org/10.1109/TMTT.2019.2926294.

    Article  Google Scholar 

  98. De Venuto, D., Mezzina, G., & Rabaey, J. (2018). Automatic 3D design for efficiency optimization of a class E power amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(2), 201–205. https://doi.org/10.1109/TCSII.2017.2765249.

    Article  Google Scholar 

  99. Fellows, M., Rezayat, S., Barlow, J., Barkate, J., Tsatsoulas, A., Baylis, C., Cohen, L., & Marks, R. J. (2016). The bias smith tube: Simultaneous optimization of bias voltage and load impedance in power amplifier design. In 2016 IEEE Radio and Wireless Symposium (RWS), pp. 215–218. https://doi.org/10.1109/RWS.2016.7444408.

  100. Barkate, J., Tsatsoulas, A., Fellows, M., Flachsbart, M., Baylis, C., Cohen, L., & Marks, R. J. (2016). Fast, momentum-aided optimization of transmitter amplifier load impedance and input power for cognitive radio using the power smith tube. In 2016 IEEE Radio and Wireless Symposium (RWS), pp. 54–56. https://doi.org/10.1109/RWS.2016.7444363.

  101. Fellows, M., Rezayat, S., Lamers, L., Barkate, J., Tsatsoulas, A., Baylis, C., et al. (2019). Bias smith tube optimization of drain voltage and load reflection coefficient to maximize power-added efficiency under ACPR constraints for radar power amplifiers. IEEE Transactions on Aerospace and Electronic Systems, 55(1), 182–191. https://doi.org/10.1109/TAES.2018.2849239.

    Article  Google Scholar 

  102. Lamers, L., Walden, E., Baylis, C., & Marks, E. V. R. J. (2017). Fast design of unconditionally stable power amplifier using the center frequency smith tube. In 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), pp. 1–4. https://doi.org/10.1109/WMCaS.2017.8070700.

  103. Kim, M., Shin, M., Kim, M., Yu, B., Mai, C., Lischke, S., Zimmermann, L., & Choi, W. (2018). A large-signal equivalent circuit for depletion-type silicon ring modulators. In 2018 Optical Fiber Communications Conference and Exposition (OFC), pp. 1–3.

  104. Guan, Z., Zhao, P., Lao, Q., Wang, X., & Wang, G. (2019). Parameter extraction for equivalent circuit model of RF devices based on a hybrid optimization method. Electronics, 8, 1133. https://doi.org/10.3390/electronics8101133.

    Article  Google Scholar 

  105. Arabi, E., Bagot, P., Bensmida, S., Morris, K., & Beach, M. (2018). An optimization-based design technique for multi-band power amplifiers. Progress in Electromagnetics Research C, 80, 1–12. https://doi.org/10.2528/PIERC17090601.

    Article  Google Scholar 

  106. Peng, J., He, S., Dai, Z., & Wang, B. (2017). A simplified sparse parameter identification algorithm suitable for power amplifier behavioral modeling. IEEE Microwave and Wireless Components Letters, 27(3), 290–292. https://doi.org/10.1109/LMWC.2017.2661682.

    Article  Google Scholar 

  107. Roobert, A. A., & Rani, D. G. N. (2019). Survey on parameter optimization of mobile communication band low noise amplifier design. International Journal of RF and Microwave Computer-Aided Engineering, 29(7), e21720. https://doi.org/10.1002/mmce.21720.

    Article  Google Scholar 

  108. Števek, J., Kvasnica, M., Fikar, M., & Gomola, A. (2018). A parametric programming approach to automated integrated circuit design. IEEE Transactions on Control Systems Technology, 26(4), 1180–1191. https://doi.org/10.1109/TCST.2017.2716378.

    Article  Google Scholar 

  109. Wu, Y., Ren, K., Liu, J., Wei, C., & Haiyan, L. (2014). Novel extraction method for small-signal equivalent circuit model of HEMTs based on vector fitting. In 2014 IEEE International Conference on Communiction Problem-solving, pp. 405–408. https://doi.org/10.1109/ICCPS.2014.7062306.

  110. Hendrickx, W., & Dhaene, T. (2006). A discussion of rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Systems, 21(1), 441–443. https://doi.org/10.1109/TPWRS.2005.860905.

    Article  Google Scholar 

  111. Ceylan, O., Yagci, H. B., & Paker, S. (2019). First-order single-parameter phase and amplitude sensitivity analysis of GaN HEMT. In 2019 27th Telecommunications Forum (TELFOR), pp. 1–4. https://doi.org/10.1109/TELFOR48224.2019.8971140.

  112. McConaghy, T., Palmers, P., Steyaert, M., & Gielen, G. G. E. (2009). Variation-aware structural synthesis of analog circuits via hierarchical building blocks and structural homotopy. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(9), 1281–1294. https://doi.org/10.1109/TCAD.2009.2023195.

    Article  Google Scholar 

  113. Das, A., & Vemuri, R. (2008). Topology synthesis of analog circuits based on adaptively generated building blocks. In 2008 45th ACM/IEEE Design Automation Conference, pp. 44–49.

  114. Afacan, E., & Dündar, G. (2017). Inversion coefficient optimization assisted analog circuit sizing tool. In 2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), pp. 1–4. https://doi.org/10.1109/SMACD.2017.7981579

  115. Ferent, C., & Doboli, A. (2014). Novel circuit topology synthesis method using circuit feature mining and symbolic comparison. In 2014 Design. Automation Test in Europe Conference Exhibition (DATE), pp. 1–4. https://doi.org/10.7873/DATE.2014.030.

  116. Ferent, C., & Doboli, A. (2014). Analog circuit design space description based on ordered clustering of feature uniqueness and similarity. Integration, 47(2), 213–231. https://doi.org/10.1016/j.vlsi.2013.08.004.

    Article  Google Scholar 

  117. Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). San Francisco, CA: Morgan Kaufmann Publishers Inc.

    MATH  Google Scholar 

  118. Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). Berlin: Springer.

    MATH  Google Scholar 

  119. Sturdivant, R., Bogdon, A., & Chong, E. (2017). Balancing thermal and electrical packaging requirements for GaN microwave and millimeter-wave high power amplifier modules. Journal of Electronics Cooling and Thermal Control, 07, 1–7. https://doi.org/10.4236/jectc.2017.71001.

    Article  Google Scholar 

  120. Ramella, C., Pirola, M., Reale, A., Ramundo, M., Colantonio, P., Maur, M. A. D., Camarchia, V., Piacibello, A., & Giofrè, R. (2019). Thermal-aware GaN/Si MMIC design for space applications. In 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), pp. 1–6. https://doi.org/10.1109/COMCAS44984.2019.8958104.

  121. Yilmaz, E., & Dundar, G. (2009). Analog layout generator for CMOS circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(1), 32–45. https://doi.org/10.1109/TCAD.2008.2009137.

    Article  Google Scholar 

  122. Park, H., Nam, H., Choi, K., Kim, J., & Kwon, Y. (2018). A 6–18-GHz GaN reactively matched distributed power amplifier using simplified bias network and reduced thermal coupling. IEEE Transactions on Microwave Theory and Techniques, 66(6), 2638–2648. https://doi.org/10.1109/TMTT.2018.2817521.

    Article  Google Scholar 

  123. Greene, J. M., Smith, R. M. H., Devlin, L. M., Santhakumar, R., & Martin, R. (2017). Design of a broadband l-band 160 W GaN power amplifier using SMT packaged transistors. Active and Passive RF Devices, 2017, 1–5. https://doi.org/10.1049/ic.2017.0002.

    Article  Google Scholar 

  124. Dokken, J. S., Funke, S. W., Johansson, A. & Schmidt, S. (2018). Shape optimization using the finite element method on multiple meshes. arXiv:1806.09821.

  125. Manohar, M. (2019). Miniaturised low-profile super-wideband koch snowflake fractal monopole slot antenna with improved BW and stabilised radiation pattern. IET Microwaves, Antennas Propagation, 13(11), 1948–1954. https://doi.org/10.1049/iet-map.2019.0116.

    Article  Google Scholar 

  126. Midya, M., Bhattacharjee, S., & Mitra, M. (2019). Triple-band dual-sense circularly polarised planar monopole antenna. IET Microwaves, Antennas Propagation, 13(12), 2020–2025. https://doi.org/10.1049/iet-map.2019.0052.

    Article  Google Scholar 

  127. Sahoo, R., & Vakula, D. (2019). Compact metamaterial inspired conformal dual-band antenna loaded with meander lines and fractal shaped inductor for Wi-Fi and WiMAX applications. IET Microwaves, Antennas Propagation, 13(13), 2349–2359. https://doi.org/10.1049/iet-map.2018.6008.

    Article  Google Scholar 

  128. Balderas, L. I., Reyna, A., Panduro, M. A., Del Rio, C., & Gutiérrez, A. R. (2019). Low-profile conformal UWB antenna for UAV applications. IEEE Access, 7, 127486–127494. https://doi.org/10.1109/ACCESS.2019.2939511.

    Article  Google Scholar 

  129. Kouhalvandi, L., Ceylan, O., Paker, S., & Yagci, H. (2017). Design and realization of a novel planar array antenna and low power LNA for Ku-band small satellite communications. Turkish Journal of Electrical Engineering & Computer Sciences,. https://doi.org/10.3906/elk-1509-148.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Marco Pirola from department of electronics and telecommunications, Politecnico di Torino (PoliTO), Italy for all his support during the preparation of this work at PoliTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lida Kouhalvandi.

Ethics declarations

Conflict of interest

One of the authors (O. Ceylan) has taken up a position at Maury Microwave CA/USA during the elaboration of this work, having no conflict of interest to declare. The other authors have declared no conflict on interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Istanbul Technical University the Scientific Research Projects Unit Under Grant No. MDK-2019-41968.

This paper is an expanded version of a paper entitled “A Review on Optimization Methods for Designing RF Power Amplifiers” from the IEEE ELECO International Conference on Electrical and Electronics Engineering, Bursa, Turkey, November 28-30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouhalvandi, L., Ceylan, O. & Ozoguz, S. Optimization techniques for analog and RF circuit designs: an overview. Analog Integr Circ Sig Process 106, 511–524 (2021). https://doi.org/10.1007/s10470-020-01733-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01733-7

Keywords

Navigation