Skip to main content
Log in

High stability voltage controlled current source for cervical cancer detection using electrical impedance spectroscopy

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The design of a high stability voltage controlled current source (VCCS) for cervical cancer detection (CCD) applying electrical bio-impedance spectroscopy (EBS) is presented. The circuit was designed, simulated and fabricated in TSMC 130 nm CMOS technology at 1.3 V power supply. The proposed Howland current source is based on self-biased complementary folded cascode (SB-CFC) operational amplifier (OA). Complying with the requirements for medical electrical equipment of international standard ABNT-NBR-IEC-60601-1 the sinusoidal current peak amplitude was settled at 10 μA. In accordance with the requirements of the EBS for CCD, the specifications for the SB-CFC-OA were calculated to meet the 100 Hz–1 MHz frequency range for the sinusoidal output current and the output impedance higher than 1 MΩ at 1 MHz frequency. Post-layout simulations were run and the main results were: 10 ± 0.0335 μA for the output current peak amplitude over the specified frequency range and with 5 kΩ load impedance; values above 1.6 MΩ output impedance at 1 MHz; nominal current amplitude variations lower than 0.4 % for load impedances in the range of 10 Ω up to 5 kΩ. And the experimental result for maximum non-linearity was 2.19 % of full scale. From these results, the performance of the VCCS is adequate for EBS-CCD applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdul, S., Brown, B. H., Milnes, P., & Tidy, J. A. (2006). The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. International Journal of Gynecological Cancer, 16(5), 1823–1832.

    Article  Google Scholar 

  2. Brown, B., Tidy, J., Blackett, A., Smallwood, R., & Sharp, F. (2000). Relation between tissue structure and imposed electrical current flow in cervical neoplasia. The Lancet, 355(9207), 892–895.

    Article  Google Scholar 

  3. Miranda, D. A. (2005). Detección Precoz de Cancer de Cuello Uterino basada en Espectro de Impedancia Eléctrica. In U. I. d. Santander (Ed.), Bucaramanga: Disertación Tesis de Maestría.

  4. Barrow, A. J., & Wu, S. M. (2007). Impedance measurements for cervical cancer diagnosis. Gynecologic Oncology, 107(1), S40–S43.

    Article  Google Scholar 

  5. Tucker, A., Fox, R., & Sadleir, R. (2013). Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation. IEEE Transactions on Biomedical Circuits and Systems, 7(1), 63–70.

    Article  Google Scholar 

  6. Bertemes-Filho, P., Felipe, A., & Vincence, V. (2013). High accurate Howland current source: Output constraints analysis. Circuits and Systems, 4(7), 451–458.

    Article  Google Scholar 

  7. Zanganeh, M. (2013). A new high output wideband ac current source with high current swing authority for electrical impedance tomography applications. International Journal of Computing and Network Technology, 1(3), 205–213.

    Article  Google Scholar 

  8. Allen, P. E., & Holberg, D. R. (2012). CMOS analog circuit design (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  9. Sai Praneeth, G., & Saini, A. (2009). A self biased operational amplifier at ultra low power supply voltage. In 16th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2009.

  10. Magnelli, L., Amoroso, F. A., Crupi, F., Capuccino, G., & Iannaccone, G. (2012). Design of a 75-nW, 0.5-V subthreshold complementary metal–oxide–semiconductor operational amplifier. International Journal of Circuit Theory and Applications, 42(9), 967–977.

    Article  Google Scholar 

  11. Aguilera, O., Bayona, O., & Miranda, D. (2007). Design criteria of Howland current source. UIS Ingenierías, 6(1), 59–68.

    Google Scholar 

  12. Ceperic, V., Butkovic, Z., & Baric, A. (2006). Design and optimization of self-biased complementary folded cascode. In Electrotechnical Conference, 2006. MELECON 2006. IEEE Mediterranean.

  13. Mandal, P., & Visvanathan, V. (1997). A self-biased high performance folded cascode CMOS op-amp. In Proceedings of Tenth International Conference on VLSI Design, 1997.

  14. Song, B., Kwon, O. J., Chang, I., Song, H. J., & Kwack, K. (1999). A 1.8 V self-biased complementary folded cascode amplifier. In The First IEEE Asia Pacific Conference on ASICs, AP-ASIC’99.

  15. Silverio, A., & Silverio, A. (2012). A high output impedance current source for wideband bioimpedance spectroscopy using 0.35 μm TSMC CMOS technology. International Journal of Engineering and Applied Sciences, 1(2), 68–75.

    Google Scholar 

Download references

Acknowledgments

The authors wish thank CNPq—Brazilian National Council of Scientific and Technological Development for support and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alejandro Amaya Palacio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaya Palacio, J.A., Van Noije, W.A. High stability voltage controlled current source for cervical cancer detection using electrical impedance spectroscopy. Analog Integr Circ Sig Process 89, 541–547 (2016). https://doi.org/10.1007/s10470-016-0828-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0828-8

Keywords

Navigation