Skip to main content
Log in

A new neuron and synapse model suitable for low power VLSI implementation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new dynamical neuron model for low power and compact VLSI implementation is presented. The model is capable of generating the most common type of spiking patterns. Judicious use of subthreshold CMOS design techniques leads to a very effective low-power CMOS Neuron and synapse circuits. The circuit consists of a single first-order log domain filter and a few hyperbolic function generators. We have also developed a circuit which realizes the synaptic interconnections of the neurons. Based on this complete neuron and synapse model, we studied synchronization behavior of two reciprocally interconnected neurons with excitatory and inhibitory couplings. Owing to the use of log-domain design and current-mode design, the circuits occupying low chip area and having very low power consumption are obtained even at real biological time-scale operation. These features make these circuits especially suitable for hybrid interface applications and large scale VLSI neuromorphic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Vreeken J., 2002. “Spiking neural networks, an introduction”, Technical Reports, Utrecht University.

  2. Izhikevich, E. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.

    Article  MathSciNet  MATH  Google Scholar 

  3. Nelson, M., & Rinzel, J. (2003). The Hodgkin–Huxley model. In The book of genesis, chapter 4.

  4. FitzHugh, R. (1961). Impulses and physiological states in models of nerve membrane. Biophysical Journal, 1, 445–466.

    Article  Google Scholar 

  5. Rose, R. M., & Hindmarsh, J. L. (1989). The assembly of ionic currents in a thalamic neuron. The three-dimensional model. Proceedings of the Royal Society of London, Series B: Biological Sciences, 237, 267–288.

    Article  Google Scholar 

  6. Izhikevich, E. (2010). Hybrid spiking models. Philosophical Transactions of the Royal Society of London A, 368, 5061–5070.

    Article  MathSciNet  MATH  Google Scholar 

  7. Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.

    Article  Google Scholar 

  8. Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.

    Article  Google Scholar 

  9. Izhikevich, E. (2007). Dynamical system in neuroscience: The geometry of excitability and bursting. Massachusetts London: The MIT Press Cambridge.

    Google Scholar 

  10. Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  Google Scholar 

  11. Touboul, J., & Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential integrate and-fire model. Biological Cybernetics, 99, 319–334.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hodgkin, A. L., & Huxley, A. F. (1954). A quantitative description of membrane current and application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    Article  Google Scholar 

  13. Naud, R., Marcille, N., & Clopath, C. (2008). Firing patterns in the adaptive exponential integrate and-fire model. Biological Cybernetics, 99, 335–347.

    Article  MathSciNet  MATH  Google Scholar 

  14. Marder, E. (2000). Motor pattern generation. Current Opinion in Neurobiology, 10(6), 691–698.

    Article  Google Scholar 

  15. Izhikevich, E. (2003). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070.

    Article  Google Scholar 

  16. Ramcharan, H. J., Gnadt, J. W., & Sherman, S. M. (2000). Burst and Tonic Firing in thalamic cells of unanesthetized, behaving monkeys. Visual Neuroscience, 17, 55–62.

    Article  Google Scholar 

  17. Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G., Carota, L., et al. (2003). A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long term memory. IEEE Transactions on Neural Networks, 14(5), 1297–1307.

    Article  Google Scholar 

  18. Indiveri, G., Chicca, E., & Douglas, R. (2006). A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks, 17(1), 211–221.

    Article  Google Scholar 

  19. Vogelstein, R. J., Mallik, U., Vogelstein, J. T., & Cauwenberghs, G. (2007). Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses. IEEE Transactions on Neural Networks, 18(1), 253–265.

    Article  Google Scholar 

  20. Arthur, J. V., & Boahen, K. A. (2007). Synchrony in silicon: The gamma rhythm. IEEE Transactions on Neural Networks, 18(6), 1815–1825.

    Article  Google Scholar 

  21. Wijekoon J. H. B. & Dudek P. (2009). A CMOS circuit implementation of a spiking neuron with bursting and adaptation on a biological timescale. In IEEE BIOCAS (pp.193–196).

  22. Livi P. & Indiveri G. (2009). A current-mode conductance-based silicon neuron for Address-Event neuromorphic systems. In Proceedings of IEEE ISCAS (pp. 2898–2901).

  23. Rangan V., Ghosh A., Aparin V. and Cauwenberghs G., 2010. “A Subthreshold a VLSI Implementation of the Izhikevich Simple Neuron Model,” IEEE EMBC.

  24. Millner S., Grübl A., Meier K., Schemmel J. and Schwartz M. O., 2010. “A VLSI Implementation of the Adaptive Exponential Integrate-and-Fire Neuron Model” Advances in Neural Information Processing Systems (NIPS) 23.

  25. Edwards, R. D., & Cauwenberghs, G. (2000). “Synthesis of Log-Domain Filters from First-Order Building Blocks” Analog Int. Circ. Sign. Proc., 22, 177–186.

    Google Scholar 

  26. Camacho-Galeano, E. M., Galup-Montoro, C., & Schneider, M. C. (2005). “A 2-nW 1.1-V self-biased current reference in CMOS technology” IEEE Trans. Circ.&Syst. II, 52, 61–65.

    Google Scholar 

  27. Van Schaik A., Jin C., McEwan A., Hamilton T. J., 2010. “A log-domain implementation of the Izhikevich neuron model”. ISCAS, 4253-4256.

  28. Wijekoon, J. H. B., & Dudek, P. (2008). Compact silicon neuron circuit with spiking and bursting behaviour. Neural Networks, 21, 524–534.

    Article  Google Scholar 

  29. Van Schaik A., Jin C., McEwan A., Hamilton T. J., Mihalas S., Niebur E., 2010. “A log-domain implementation of the Mihalas-Niebur neuron model”, IEEE Proc. of ISCAS, 4249-4252.

  30. Zhang X., 2008. “A Mathematical Model of a Neuron with Synapses based on Physiology”, Nature Precedings.

  31. Pinto, R. D., Varona, P., Volkovskii, A. R., Szucs, A., Abarbanel, H. D. I., & Rabinovich, M. I. (2000). Synchronous behavior of two coupled electronic Neurons. Physical Review E, 62(2), 2644–2656.

    Article  Google Scholar 

  32. Galan, Roberto F., Bard Ermentrout, G., & Urban, Nathaniel N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Physical Review Letters, PRL, 84, 158101.

    Article  Google Scholar 

  33. Gutkin, Boris S., Bard Ermentrout, G., & Reyes, Alex D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.

    Article  Google Scholar 

  34. Uwate, Y., Nishio, Y., & Stoop, R. (2010). Complex pattern in a ring of van der Pol oscillators coupled by time-varying resistor. Journal of Circuits, Systems, and Computers, 19(4), 819–834.

    Article  Google Scholar 

  35. Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Erdener.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdener, Ö., Ozoguz, S. A new neuron and synapse model suitable for low power VLSI implementation. Analog Integr Circ Sig Process 89, 749–770 (2016). https://doi.org/10.1007/s10470-016-0773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0773-6

Keywords

Navigation