Skip to main content
Log in

New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

There have been two efforts earlier on evolving CFOA-based fully-uncoupled oscillators i.e. circuits in which none of the resistors controlling the frequency of oscillation (FO) appear in the condition of oscillation and vice versa. However, a non-ideal analysis of the earlier known circuits reveals that due to the effect of the parasitic impedances of the CFOAs, the independent controllability of FO is completely destroyed. The main objective of this paper is to present two new fully-uncoupled oscillators in which the independent controllability of the FO remains intact even under the influence of the non-ideal parameters/parasitics of the CFOAs employed. The workability of the proposed circuits has been confirmed by experimental results using AD844-type CFOAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing; classification, review and new proposals. Radioengineering Journal, 17(4), 15–32.

    Google Scholar 

  2. Hribsek, H., & Newcomb, R. W. (1976). VCO controlled by one variable resistor. IEEE Transactions on Circuits and Systems, CAS-23(3), 166–169.

    Article  Google Scholar 

  3. Senani, R. (1979). New canonic sinusoidal oscillator with independent control through a single grounded resistor. Proceedings of the IEEE (USA), 67(4), 691–692.

    Article  Google Scholar 

  4. Bhattacharyya, B. B., & Tavakoli Darkani, M. (1984). A unified approach to the realization of canonic RC-active, single as well as variable, frequency oscillators using operational amplifiers. Journal of the Franklin Institute, 317(6), 413–439.

    Article  Google Scholar 

  5. Prem Pyara, V., Dutta Roy, S. C., & Jamuar, S. S. (1983). Identification and design of single amplifier single resistance controlled oscillators. IEEE Transactions on Circuits and Systems, 30(3), 176–181.

    Article  Google Scholar 

  6. Bhaskar, D. R., Tripathi, M. P., & Senani, R. (1993). Systematic derivation of all possible canonic OTA-C sinusoidal oscillators. Journal of the Franklin Institute (USA), 330(5), 885–903.

    Article  MATH  Google Scholar 

  7. Bhaskar, D. R., & Senani, R. (1994). New linearly tunable CMOS-compatible OTA-C oscillators with non-interacting controls. Microelectronics Journal (UK), 25, 115–123.

    Article  Google Scholar 

  8. Abuelma’atti, M. T., & Almaskati, R. H. (1989). Two new integrated active-C OTA-based linear voltage (current)-controlled oscillators. International Journal of Electronics, 66(1), 135–138.

    Article  Google Scholar 

  9. Rodriguez-Vazquez, A., Linares-Barranco, B., Huertas, J. L., & Sanchez-Sinencio, E. (1990). On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Transactions on Circuits and Systems, 37(2), 198–211.

    Article  Google Scholar 

  10. Celma, S., Martinez, P. A., & Carlosena, A. (1994). Current feedback amplifiers based sinusoidal oscillators. IEEE Transaction on Circuits and Systems I, 41(12), 906–908.

    Article  Google Scholar 

  11. Liu, S. I., Shih, C. S., & Wu, D. S. (1994). Sinusoidal oscillators with single element control using a current-feedback amplifier. International Journal of Electronics, 77(6), 1007–1013.

    Article  Google Scholar 

  12. Abuelma’atti, M. T., Farooqi, A. A., & Al-Shahrani, S. M. (1996). Novel RC oscillators using the current-feedback operational amplifier. IEEE Transaction on Circuits and System I, 43(2), 155–157.

    Article  Google Scholar 

  13. Gupta, S. S., & Senani, R. (1998). State variable synthesis of single-resistance-controlled grounded capacitor oscillators using only two CFOAs: additional new realizations. IEE Proceedings Circuits Devices Systems, 145(2), 415–418.

    Article  Google Scholar 

  14. Senani, R., & Singh, V. K. (1996). Novel single-resistance-controlled-oscillator configuration using current feedback amplifiers. IEEE Transaction on Circuits and Systems I, 43(8), 698–700.

    Article  Google Scholar 

  15. Gupta, S. S., & Senani, R. (2005). Grounded-capacitor SRCOs using a single differential-difference-complementary-current-feedback-amplifier. IEE Proceedings Circuits Devices Systems, 152(1), 38–48.

    Article  Google Scholar 

  16. Gupta, S. S., & Senani, R. (2000). Grounded-capacitor current-mode SRCO: Novel application of DVCCC. Electronics Letters, IEE (UK), 36(3), 195–196.

    Article  Google Scholar 

  17. Bhaskar, D. R., & Senani, R. (1993). New current conveyor based single resistance controlled/voltage-controlled oscillator employing grounded capacitors. Electronics Letters, IEE (UK), 29(7), 612–614.

    Article  Google Scholar 

  18. Singh, A. K., & Senani, R. (2001). Active-R design using CFOA-poles: New resonators, filters and oscillators. IEEE Transactions on Circuits and Systems II, 48(5), 504–511.

    Article  Google Scholar 

  19. Chang, C. M. (1994). Novel current-conveyor-based single-resistance-controlled/voltage-controlled oscillator employing grounded resistors and capacitors. Electronics Letters, 30(3), 181–183.

    Article  Google Scholar 

  20. Soliman, A. M. (2000). Current feedback operational amplifier based oscillators. Analog Integrated Circuits and Signal Processing, 23(2), 45–55.

    Article  Google Scholar 

  21. Singh, V. K., Sharma, R. K., Singh, A. K., Bhaskar, D. R., & Senani, R. (2005). Two new canonic single-CFOA oscillators with Single resistor controls. IEEE Transactions on Circuits and Systems II, 52(12), 860–864.

    Article  Google Scholar 

  22. Toumazou, C., & Lidgey, F. J. (1994). Current feedback op-amps: A blessing in disguise? IEEE Circuits and Devices Magazine, 10(1), 34–37.

    Google Scholar 

  23. Soliman, A. M. (1996). Applications of the current feedback amplifier. Analog Integrated Circuits and Signal Processing, 11, 265–302.

    Article  Google Scholar 

  24. Lidgey, F. J., & Hayatleh, K. (1997). Current-feedback operational amplifiers and applications. Electronics and Communication Engineering Journal, 176–182.

  25. Senani, R. (1998). Realization of a class of analog signal processing/signal generation circuits: Novel configurations using current feedback op-amps. Frequenz, 52(9/10), 196–206.

    Google Scholar 

  26. Martinez, P. A., Celma, S., & Sabadell, J. (1996). Designing sinusoidal oscillators with current-feedback amplifiers. International Journal of Electronics, 80, 637–646.

    Article  Google Scholar 

  27. Mahmoud, S. A., Elwan, H. O., & Soliman, A. M. (2000). Low voltage rail to rail CMOS current feedback operational amplifier and its applications for analog VLSI. Analog Integrated Circuits and Signal Processing, 25(1), 47–57.

    Article  Google Scholar 

  28. Mita, R., Palumbo, G., & Pennisi, S. (2005). Low-voltage high-drive CMOS current feedback op-amp. IEEE Transactions on Circuits and Systems II, 52(6), 317–321.

    Article  Google Scholar 

  29. Madian, A. H., Mahmoud, S. A., & Soliman, A. M. (2007). Low voltage CMOS fully differential current feedback operational amplifier with controllable 3-dB bandwidth. Analog Integrated Circuits and Signal Processing, 52, 139–146.

    Article  Google Scholar 

  30. Senani, R., & Singh, V. K. (1996). Synthesis of canonic single-resistance-controlled-oscillators using a single current-feedback-amplifier. IEE Proceedings Circuits Devices System, 143(1), 71–72.

    Article  MATH  Google Scholar 

  31. Liu, S. I., & Tsay, J. H. (1996). Single-resistance-controlled sinusoidal oscillator using current feedback amplifiers. International Journal of Electronics, 80(5), 661–664.

    Article  Google Scholar 

  32. Martinez, P. A., Sabadell, J., Aldea, C., & Celma, S. (1999). Variable frequency sinusoidal oscillators based on CCII+. IEEE Transaction on Circuits and System I, 46(11), 1386–1390.

    Article  Google Scholar 

  33. Abuelma’atti, M. T., & Al-Shahrani, A. M. (1996). A novel low-component-count single-element-controlled sinusoidal oscillator using the CFOA pole. International Journal of Electronics, 80(6), 747–752.

    Article  Google Scholar 

  34. Abuelma’atti, M. T., & Farooqi, A. A. (1996). A novel single-element controlled oscillator using the current feedback-operational amplifier pole. Frequenz, 50(7–8), 183–184.

    Google Scholar 

  35. Abuelma’atti, M. T., & Al-Shahrani, S. M. (1997). New CFOA-based sinusoidal oscillators. International Journal of Electronics, 82(1), 27–32.

    Article  Google Scholar 

  36. Abuelma’atti, M. T., & Al-Shahrani, A. M. (1998). Novel CFOA-based sinusoidal oscillators. International Journal of Electronics, 85(4), 437–441.

    Article  Google Scholar 

  37. Gunes, E. O., & Toker, A. (2002). On the realization of oscillators using state equations. AEU, 56(5), 1–10.

    Google Scholar 

  38. Toker, A., Cicekoglu, O., & Kuntman, H. (2002). On the oscillator implementations using a single current feedback op-amp. Computers & Electrical Engineering, 28, 375–389.

    Article  MATH  Google Scholar 

  39. Senani, R., & Sharma, R. K. (2005). Explicit current output sinusoidal oscillators employing only a single Current feedback op-amp. IEICE Electron Express, 2(1), 14–18.

    Article  Google Scholar 

  40. Gupta, S. S., & Senani, R. (2006). New single resistance controlled oscillator configurations using unity-gain cells. Analog Integrated Circuits and Signal Processing, 46, 111–119.

    Article  Google Scholar 

  41. Gupta, S. S., Sharma, R. K., Bhaskar, D. R., & Senani, R. (2006). Synthesis of sinusoidal oscillators with explicit current output using current-feedback Op-amps. WSEAS Transaction on Electronic, 3(7), 385–388.

    Google Scholar 

  42. Bhaskar, D. R., & Senani, R. (2006). New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Transactions on Instrumentation and Measurement, 55(6), 2014–2021.

    Article  Google Scholar 

  43. Celma, S., Martinez, P. A., & Carlosena, A. (1994). Approach to the synthesis of canonic RC-active oscillators using CCII. IEE Proceedings Circuits Devices Systems, 141(6), 493–497.

    Article  Google Scholar 

  44. Bhaskar, D. R. (2003). Realization of second-order sinusoidal oscillator/filters with non-interacting controls using CFAs. Frequenz, 57(1/2), 12–14.

    Article  Google Scholar 

  45. Moon, G., Zaghloul, M. E., & Newcomb, R. W. (1990). Enhancement-mode MOS voltage-controlled linear resistor with large dynamic range. IEEE Transactions on Circuits and Systems, 37(10), 1284–1288.

    Article  Google Scholar 

  46. Senani, R. (1994). Realization of linear voltage-controlled resistance in floating form. Electronics Letters, IEE, 30(23), 1909–1911.

    Article  Google Scholar 

  47. Elwan, H. O., Mahmoud, S. A., & Soliman, A. M. (1996). CMOS voltage-controlled floating resistor. International Journal of Electronics, 81(5), 571–576.

    Article  Google Scholar 

  48. Al-Shahrani, S. M. (1994). CMOS wideband auto-tuning phase shifter circuit. Electronics Letters, IEE, 43(15), 804–806.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the constructive comments and suggestions of the anonymous reviewers which have been helpful in preparing the revised version of the manuscript. Authors thank Reviewer # 3 for his very thoughtful and insightful comments and for suggesting the flow-graph-based interpretation of the proposed circuits, excerpts from which have been included at the end of Sect. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Senani.

Appendix A

Appendix A

1.1 Analysis of the previously known CFOA-based grounded capacitor SRCOs taking into account the effect of parasitic impedances of the CFOAs

In the earlier literature, there appear to be only two circuits employing CFOAs which belong to the category of fully-uncoupled oscillators, namely, the circuit presented by Soliman [20] and the circuit presented by Bhaskarc [44], which are shown here in Figs. 5 and 6 respectively.

Fig. 5
figure 5

Fully-uncoupled oscillator proposed by Soliman [20]

Fig. 6
figure 6

Fully-uncoupled oscillator proposed by Bhaskar [44]

Both these circuits employ exactly the same number of active and passive components as in the circuits presented in this paper. Ideal CO and FO for the circuits of Figs. 5 and 6 are respectively given by:

$$ \begin{aligned} R_{3} &= R_{4}\;\;({\text{for\;Fig.\,5}})\\ R_{1} & = R_{2}\;\;({\text{for\;Fig.\,6}}) \end{aligned} $$
(8)
$$ \begin{aligned} f_{0} &= \frac{1}{2\pi }\sqrt {\frac{1}{{C_{1} C_{2} R_{1} R_{2} }}} \;\;( {\text{for Fig.\,5}}) \\ f_{0} &= \frac{1}{2\pi }\sqrt {\frac{1}{{C_{1} C_{2} R_{3} R_{4} }}} \;\;( {\text{for Fig.\,6}} ) \end{aligned} $$
(9)

From a non-ideal analysis, CE, CO and FO of the oscillator of Fig. 5 are respectively given by:

$$ s^{3} \left( {C_{1}^{'} C_{2}^{'} C_{z2} R_{x3} } \right) + s^{2} \left\{ {C_{1}^{'} C_{2}^{'} \left( {1 + \frac{{R_{x3} }}{{R_{3}^{'} }}} \right) + C_{2}^{'} C_{z2} \left( {\frac{{R_{x3} }}{{R_{z1} }}} \right) + C_{1}^{'} C_{z2} \left( {\frac{{R_{x3} }}{{R_{4}^{'} }} - 1} \right)} \right\} + s\left[ {C_{1}^{'} \left\{ {\left( {1 + \frac{{R_{x3} }}{{R_{3}^{'} }}} \right)\left( {\frac{1}{{R_{4}^{'} }}} \right) - \frac{1}{{R_{3}^{'} }}} \right\} + C_{2}^{'} \left( {1 + \frac{{R_{x3} }}{{R_{3}^{'} }}} \right)\left( {\frac{1}{{R_{z1} }}} \right) + C_{z2} \left( {\frac{{R_{x3} }}{{R_{4}^{'} }} - 1} \right)\left( {\frac{1}{{R_{z1} }}} \right)} \right] + \left[ {\frac{1}{{R_{z1} }}\left\{ {\left( {1 + \frac{{R_{x3} }}{{R_{3}^{'} }}} \right)\left( {\frac{1}{{R_{4}^{'} }}} \right) - \frac{1}{{R_{3}^{'} }}} \right\} + \frac{1}{{R_{1}^{'} R_{2}^{'} }}} \right] = 0\;{\rm where}\;C_{1}^{'} = \left( {C_{1} + C_{z1} } \right);\,C_{2}^{'} = \left( {C_{2} + C_{z2} } \right);\,R_{1}^{'} = \left( {R_{1} + R_{x1} } \right);\;R_{2}^{'} = \left( {R_{2} + R_{x2} } \right);\; R_{3}^{'} = \left( {R_{3} \left\| {R_{z2} } \right.} \right);\;R_{4}^{'} = \left( {R_{4} \left\| {R_{z3} } \right.} \right)$$
(10)
$$ 1 - \frac{{R_{4}^{\prime } }}{{R_{3}^{\prime } }} + \frac{{C_{2}^{\prime } R_{4}^{\prime } R_{x3}^{2} }}{{C_{1}^{\prime } R_{3}^{\prime 2} R_{z1} }} + \frac{{2C_{2}^{\prime } R_{4}^{\prime } R_{x3} }}{{C_{1}^{\prime } R_{3}^{\prime } R_{z1} }} + \frac{{C_{2}^{\prime } R_{4}^{\prime } }}{{C_{1}^{\prime } R_{z1} }} + \frac{{C_{2}^{\prime } R_{4}^{\prime } R_{x3}^{2} C_{z2} }}{{C_{1}^{\prime 2} R_{3}^{\prime } R_{z1}^{2} }} + \frac{{C_{2}^{\prime } R_{4}^{\prime } R_{x3} C_{z2} }}{{C_{1}^{\prime 2} R_{z1}^{\prime } }} - \frac{{2R_{4}^{\prime } R_{x3} C_{z2} }}{{C_{1}^{\prime } R_{3}^{\prime } R_{z1} }} - \frac{{2R_{4}^{\prime } C_{z2} }}{{C_{1}^{1} R_{z1} }} + \frac{{R_{x3}^{2} }}{{R_{3}^{\prime 2} }} + \frac{{2R_{x3} }}{{R_{3}^{\prime } }} + \frac{{2R_{x3}^{2} C_{z2} }}{{C_{1}^{\prime } R_{3}^{\prime } R_{z1} }} + \frac{{2R_{x3} C_{z2} }}{{C_{1}^{\prime } R_{z1} }} + \frac{{R_{x3}^{2} C_{z2} }}{{C_{2}^{\prime } R_{3}^{\prime } R_{4}^{\prime } }} + \frac{{R_{x3} C_{z2} }}{{C_{2}^{\prime } R_{4}^{\prime } }} - \frac{{2R_{x3} C_{z2} }}{{C_{2}^{'} R_{3}^{'} }} - \frac{{C_{z2} }}{{C_{2}^{'} }} - \frac{{R_{4}^{\prime } R_{x3} }}{{R_{3}^{\prime 2} }} + \left( {\frac{{R_{x3} C_{z2} }}{{C_{1}^{\prime } R_{z1} }}} \right)^{2} + \frac{{\left( {R_{x3} C_{z2} } \right)^{2} }}{{C_{1}^{\prime } C_{2}^{\prime } R_{4}^{\prime } R_{z1} }} - \frac{{2R_{x3} C_{z2}^{2} }}{{C_{1}^{\prime } C_{2}^{\prime } R_{z1} }} + \frac{{R_{4}^{\prime } C_{z2} }}{{C_{2}^{\prime } R_{3}^{\prime } }} - \frac{{R_{4}^{\prime } R_{x3} C_{z2}^{2} }}{{C_{1}^{\prime 2} R_{z1}^{2} }} + \frac{{R_{4}^{\prime } C_{z2}^{2} }}{{C_{1}^{'} C_{2}^{'} R_{z1} }} - \frac{{R_{4}^{\prime } R_{x3} C_{z2} }}{{C_{1}^{\prime } R_{1}^{\prime } R_{2}^{\prime } }} = 0 $$
(11)
$$ f_{0}^{'} = \frac{1}{2\pi }\sqrt {\frac{1}{{C_{1} C_{2} R_{1} R_{2} }}} \left[ \frac{{\frac{1}{{\left( {1 + \frac{{R_{x1} }}{{R_{1} }}} \right)\left( {1 + \frac{{R_{x2} }}{{R_{2} }}} \right)}} + \frac{{R_{1} R_{2} }}{{R_{z1} }}\left\{ {\left( {\frac{1}{{R_{4} }} + \frac{1}{{R_{z3} }}} \right)\left( {1 + \frac{{R_{x3} }}{{R_{3} }} + \frac{{R_{x3} }}{{R_{z2} }}} \right) - \frac{1}{{R_{3} }} - \frac{1}{{R_{z2} }}} \right\}}}{{\left( {1 + \frac{{C_{z1} }}{{C_{1} }}} \right)\left( {1 + \frac{{C_{z2} }}{{C_{2} }}} \right)\left( {1 + \frac{{R_{x3} }}{{R_{3} }} + \frac{{R_{x3} }}{{R_{z2} }}} \right)}} + C_{z3} R_{x3} \left\{ {\frac{{\left( {1 + \frac{{C_{z2} }}{{C_{2} }}} \right)}}{{C_{1} R_{z1} }} + \frac{{\left( {1 + \frac{{C_{z1} }}{{C_{1} }}} \right)\left( {\frac{1}{{R_{4} }} + \frac{1}{{R_{z3} }}} \right)}}{{C_{2} }}} \right\} - \frac{{C_{z2} }}{{C_{2} }}\left( {1 + \frac{{C_{z1} }}{{C_{1} }}} \right) \right]^{1/2} $$
(12)

The CE, CO and FO for the oscillator of Fig. 6 are respectively given by:

$$ s^{3} \left( {C_{1}^{'} C_{2}^{'} C_{z3} } \right) + s^{2} \left\{ {C_{1}^{'} C_{2}^{'} \left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right) + C_{1}^{'} C_{z3} \left( {\frac{1}{{R_{z} }}} \right) + C_{2}^{'} C_{z3} \left( {\frac{1}{{R_{z1} }}} \right)} \right\} + s\left[ {C_{1}^{'} \left( {\frac{1}{{R_{z} }}} \right)\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right) + C_{2}^{'} \left\{ {\left( {\frac{1}{{R_{z1} }}} \right)\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right) + \left( {\frac{1}{{R_{3}^{'} }}} \right)\left( {\frac{1}{{R_{1} }} - \frac{1}{{R_{2}^{'} }}} \right)} \right\} + C_{z3} \left( {\frac{1}{{R_{3}^{'} R_{4}^{'} }}} \right)} \right] + \left[ {\frac{1}{{R_{z} R_{3}^{'} }}\left( {\frac{1}{{R_{1} }} - \frac{1}{{R_{2}^{'} }}} \right) + \frac{1}{{R_{3}^{'} R_{4}^{'} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right)} \right] = 0\;where\;C_{1}^{'} = \left( {C_{1} + C_{z1} } \right);\,C_{2}^{'} = \left( {C_{2} + C_{z2} + C_{y1} } \right);\,R_{2}^{'} = \left( {R_{2} + R_{x2} } \right);\;R_{3}^{'} = \left( {R_{3} + R_{x1} } \right);\; R_{4}^{'} = \left( {R_{4} + R_{x2} } \right);\;R_{z} = \left( {R_{y1} \left\| {R_{z2} } \right.} \right) $$
(13)
$$ C_{1}^{\prime } C_{2}^{\prime 2} \left( {\frac{1}{{R_{3} + R_{x1} }}} \right)\left( {\frac{1}{{R_{1} }} - \frac{1}{{R_{2} + R_{x3} }}} \right)\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right) + C_{1}^{\prime 2} C_{2}^{\prime } \left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right)^{2} \left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{z2} }}} \right) + C_{1}^{\prime } C_{2}^{\prime 2} \left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right)^{2} \left( {\frac{1}{{R_{z1} }}} \right) + C_{1}^{'2} C_{z3} \left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right)\left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{z2} }}} \right)^{2} + 2C_{1}^{\prime } C_{2}^{\prime } C_{z3} \left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{z2} }}} \right) \left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right)\left( {\frac{1}{{R_{z1} }}} \right) + C_{2}^{\prime 2} C_{z3} \left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right)\left( {\frac{1}{{R_{z1} }}} \right)^{2} + C_{1}^{\prime } C_{z3}^{2} \left( {\frac{1}{{R_{3} + R_{x1} }}} \right)\left( {\frac{1}{{R_{4} + R_{x2} }}} \right)\left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{z2} }}} \right) + C_{2}^{\prime } C_{z3}^{2} \left( {\frac{1}{{R_{3} + R_{x1} }}} \right)\left( {\frac{1}{{R_{4} + R_{x2} }}} \right)\left( {\frac{1}{{R_{z1} }}} \right) + C_{2}^{\prime 2} C_{z3} \left( {\frac{1}{{R_{3} + R_{x1} }}} \right)\left( {\frac{1}{{R_{1} }} - \frac{1}{{R_{2} + R_{x3} }}} \right)\left( {\frac{1}{{R_{z1} }}} \right) = 0 $$
(14)
$$ f_{0}^{\prime } = \frac{1}{2\pi }\sqrt {\frac{1}{{C_{1} C_{2} R_{3} R_{4} }}} \left[ {\frac{{\frac{{\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right)}}{{\left( {1 + \frac{{R_{x1} }}{{R_{3} }}} \right)\left( {1 + \frac{{R_{x2} }}{{R_{4} }}} \right)}} + \frac{{R_{4} \left( {\frac{1}{{R_{1} }} - \frac{1}{{R_{2} \left( {1 + \frac{{R_{x3} }}{{R_{2} }}} \right)}}} \right)\left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{z2} }}} \right)}}{{\left( {1 + \frac{{R_{x1} }}{{R_{3} }}} \right)}}}}{ \left( {1 + \frac{{C_{z1} }}{{C_{1} }}} \right)\left( {1 + \frac{{C_{z2} + C_{y2} }}{{C_{2} }}} \right)\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{z3} }}} \right) + \left( {1 + \frac{{C_{z1} }}{{C_{1} }}} \right)\left( {\frac{{C_{z3} }}{{C_{2} }}} \right)\left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{z2} }}} \right) + \left( {1 + \frac{{C_{z2} + C_{y2} }}{{C_{2} }}} \right)\left( {\frac{1}{{R_{z1} }}} \right)\left( {\frac{{C_{z3} }}{{C_{1} }}} \right) }} \right]^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}} $$
(15)

From Eqs. (1012), and (1315) it may be seen that in both the circuits of Figs. 5 and 6, all the four resistors employed therein are present in the CO as well as in FO. It is, therefore, concluded that in both these circuits the fully-uncoupled nature of CO and FO is completely disturbed when the effect of parasitic of the CFOAs is accounted for.

For the sake of comparison with previously known conventional type of CFOA-based SRCOs, a similar non-ideal analysis has been carried out for an exemplary two-CFOA-two-grounded capacitors (GC) SRCO from [31] shown in Fig. 7. In this context it may be noted that none of the single-CFOA SRCOs known till date employ both grounded capacitors while two-CFOA-based SRCOs do employ both grounded capacitors. However, out of various such two-CFOA-GC SRCOs, the closest to the present class appears to be the one proposed in [31] which also provides control of FO through two resistors (like the circuits proposed in this paper) and hence, the choice.

Fig. 7
figure 7

An exemplary two-CFOA-GC oscillator proposed by Liu and Tsay [31]

The circuit of Fig. 7 is ideally characterized by the following CO and FO:

$$ {\text{CO}}:\left( {1 + \frac{{C_{2} }}{{C_{1} }}} \right) = \frac{{R_{1} }}{{R_{2} }} $$
$$ f_{0} = \frac{1}{2\Uppi }\sqrt {\frac{{R_{3} }}{{2C_{1} C_{2} R_{1} R_{2} R_{4} }}} $$

However, a re-analysis of this circuit reveals that its non-ideal CE is given by:

$$ s^{3} + s^{2} \left[ {\frac{1}{{C_{1}^{'} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{y1} }}} \right) + \frac{1}{{C_{2}^{'} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R^{'} }} - \frac{1}{{R_{2}^{'} }}} \right) + \frac{1}{{C_{z1} }}\left( {\frac{1}{{R_{z1} }} + \frac{{R_{x1} + 2R_{4} }}{{R_{x1} R_{3} + R_{x1} R_{4} + R_{3} R_{4} }}} \right)} \right] + s\left[ \frac{1}{{C_{1}^{'} C_{2}^{'} }}\left\{ {\frac{1}{{R_{y1} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R^{'} }} - \frac{1}{{R_{2}^{'} }}} \right) + \frac{1}{{R_{1} }}\left( {\frac{1}{{R^{'} }} - \frac{1}{{R_{2}^{'} }}} \right)} \right\} + \frac{1}{{C_{z1} C_{2}^{'} }}\left\{ {\frac{1}{{R_{z1} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R^{'} }} - \frac{1}{{R_{2}^{'} }}} \right)} \right\} + \frac{1}{{C_{z1} C_{1}^{'} }}\left\{ {\frac{1}{{R_{z1} }}\left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{1} }}} \right)} \right\} + \left( {\frac{{R_{x1} + 2R_{4} }}{{R_{x1} R_{3} + R_{x1} R_{4} + R_{3} R_{4} }}} \right)\left\{ {\frac{1}{{C_{z1} C_{2}^{'} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R^{'} }} - \frac{1}{{R_{2}^{'} }}} \right) + \frac{1}{{C_{z1} C_{1}^{'} }}\left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{1} }}} \right)} \right\} \right] + \frac{1}{{C_{1}^{'} C_{2}^{'} C_{z1} }}\left[ \left( {\frac{1}{{R_{z1} }} + \frac{1}{{R_{3} }}} \right)\left\{ {\frac{1}{{R_{y1} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R^{'} }} - \frac{1}{{R_{2}^{'} }}} \right) + \frac{1}{{R_{1} }}\left( {\frac{1}{{R^{'} }} - \frac{1}{{R_{2}^{'} }}} \right)} \right\} + \frac{{\left( {\frac{1}{{R_{3} }} - \frac{1}{{R_{x1} }}} \right)\left( {\frac{1}{{R_{1} }}\frac{1}{{R_{x1} }}\frac{1}{{R_{2}^{'} }}} \right) - \frac{1}{{R_{3} }}\left( {\frac{1}{{R_{y1} }} + \frac{1}{{R_{1} }}} \right)\left( {\frac{1}{{R_{1} }} + \frac{1}{{R^{'} }} - \frac{1}{{R_{2}^{'} }}} \right)}}{{\frac{1}{{R_{x1} }} + \frac{1}{{R_{3} }} + \frac{1}{{R_{4} }}}}\right]$$

where \( R^{'} = R_{y2} \left\| {R_{z2} } \right.,\,\,\,C_{2}^{'} = C_{2} + C_{z2} ,\,\,C_{1}^{'} = C_{1} + C_{y1} ,\,\,\,R_{2}^{'} = R_{w1} + R_{2} + R_{x2} \).

From above equation it is, thus, seen that, as expected, in this circuit also, when the various parasitic non-ideal effects of the CFOAs are accounted for, both the frequency-controlling resistors R 3 and R 4 creep into all the coefficients of the CE and hence, also in the CO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaskar, D.R., Gupta, S.S., Senani, R. et al. New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances. Analog Integr Circ Sig Process 73, 427–437 (2012). https://doi.org/10.1007/s10470-012-9896-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9896-6

Keywords

Navigation