Skip to main content
Log in

Modeling and designing of high-gain, wide-band and fast-speed operational transconductance amplifier

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Based on the analysis of the inherent limitations of conventional OTA, this paper introduces a basic strategy by combinating linear-nonlinear adaptive current mirror and local cross-pair to solve the mutual restraint between AC and DC characteristics of the circuit. In order to simplify the multi-mode complicated circuit design, an analytical model for the new OTA is proposed, which is consistent with SPICE simulation results. Under the limitation of the static current consumption, the maximum limit of the circuit performance can be predicted by the proposed model. Under the condition of 29 μA quiescent current and 30 pF load capacitance, a chip is implemented in 0.18 μm CMOS technology, and the test results show that the DC gain, GBW and slew rate achieve 73 dB, 6 MHz and 14 V/μS, respectively, and the optimal performance of DC, AC and transient can be obtained almost simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DC:

Direct current

AC:

Alternating current

AV :

DC gain

GBW:

Gain-bandwidth product

SR:

Slew rate

PM:

Phase margin

OTA:

Operational transconductance amplifier

FVF:

Flipped voltage follower

References

  1. Roh, J. (2005). High-performance error amplifier for fast transient DC–DC converters [J]. IEEE Transactions on Circuits and Systems II, 52(9), 591–595.

    Article  Google Scholar 

  2. Huang, H.-W., Ho, H.-H., Chang, C.-J., Chen, K.-H., & Kuo, S.-Y. (2006). On-chip compensated error amplifier for fast-transient dc–dc converters [J]. In Proceedings of IEEE EIT conference (pp. 103–108).

  3. Yao, K., Lee, K., Xu, M., & Lee, F. C. (2003). Optimal design of the active droop control method for the transient response. Applied Power Electronics Conference and Exposition, 2, 718–723.

    Google Scholar 

  4. Jeongjin, R. O. H. (2006). High-gain class-AB OTA with low quiescent current. Analog Integrated Circuits and Signal Processing, 47, 225–228.

    Article  Google Scholar 

  5. Cao, T. V., Wisland, D. T., Lande, T. S., & Moradi, F. (2009). Low-power, enhanced-gain adaptive-biasing-based operational transconductance amplifiers. In IEEE conferences, 1–4.

  6. Pude, M., Mukund, P. R., Singh, P., Paradis, K., & Burleson, J. (2010). Amplifier gain enhancement with positive feedback. In 53rd IEEE International Midwest symposium on circuit and systems (MWSCAS), 2010 (pp. 981–984).

  7. Maity, A., Yamamura, N., Knight, J., & Patra, A. (2008). High-gain wideband error amplifier topology for DC–DC buck converter switching at 20 MHz [J]. Electronics Letters, 44(11), 655–656.

    Article  Google Scholar 

  8. Liu, A., & Yang, H. (2006). Low voltage low power class-AB OTA with negative resistance load, communications. In 2006 International conference on circuit and systems proceedings (pp. 2251–2254).

  9. Pennisi, M., Palumbo, G., & Carvajal, R. G. (2010). Analysis and comparison of class AB current mirror OTAs. Analog Integrated Circuits and Signal Processing. doi:10.1007/s10470-010-9547-8.

  10. Galan, J. A., Lopez-Martin, A. J., Carvajal, R. G., Ramirez-Angulo, J., & Rubia-Marcos, C. (2007). Super class-AB OTAs with adaptive biasing and dynamic output current scaling [J]. IEEE Transactions on CAS-I, 54(3), 449–457.

    Article  Google Scholar 

  11. Carvajal, R. G., Ramire-Angulo, J., Lope-Martin, A. J., Torralba, A., Galan, J. A. G., Carlosena, A., & Chavero, F. M. (2005).The fipped voltage follower: a useful cell for low-voltage low-power circuit design. Circuit and System I: Regular Papers. IEEE Transactions, 1276–1291.

  12. Fayomi, C. J. B., Wirth, G. I., Ramirez-Angulo, J., & Matsuzawa, A. (2008). The flipped voltage follow-based low voltage fully differential CMOS sample-and-hold circuit. In IEEE international symposium on circuit and systems, 2008 (ISCAS 2008) (pp. 1716–1719), 18–21.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma Ke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Ke, M., Qu, N. et al. Modeling and designing of high-gain, wide-band and fast-speed operational transconductance amplifier. Analog Integr Circ Sig Process 71, 255–263 (2012). https://doi.org/10.1007/s10470-011-9736-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9736-0

Keywords

Navigation