Skip to main content
Log in

Implementation of a field programmable gate array for wireless control of a lab-on-a-robot

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

We report the design of a digital system to wirelessly control microchip capillary electrophoresis (CE) equipment and a mobile unit for chemical analysis. The digital system consists of an embedded processor designed for digital control, decoding and applying of wirelessly-transmitted test parameters, data acquisition, and mobility control. The design is implemented on a field programmable gate array (FPGA) and its development board interfaces with four digital-to-analog converters on a newly-designed 3-channel high voltage power supply, electrochemical detector, wireless modems for communications with a base unit, mobile platform motor controllers, GPS sensor, and an air micropump. The FPGA allows for all the interfacing hardware to perform CE and transmission of the data acquired from the interfacing electrochemical detector. The work described herein extends the utilization of microchip capillary electrophoresis to include remotely controlled field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borowsky, J., & Collins, G. E. (2007). Chemical and biological threat-agent detection using electrophoresis-based lab-on-a-chip devices. Analyst, 132, 958–962.

    Article  Google Scholar 

  2. Berg, C., Valdez, D. C., Bergeron, P., Mora, M. F., Garcia, C. D., & Ayon, A. (2008). Lab-on-a-robot: Integrated microchip-capillary electrophoresis, power supply, potentiostat, wireless unit, and controller circuitry. Electrophoresis, 29, 4914–4921.

    Article  Google Scholar 

  3. Garcia, C. D., & Henry, C. (2007). Coupling electrochemical detection with microchip capillary electrophoresis. In W. Wang & S. A. Soper (Eds.), BioMEMS: Technologies and applications (pp. 265–298). Boca Raton, FL: Taylor and Francis Group.

    Google Scholar 

  4. Garcia, C. D., & Henry, C. S. (2005). Comparison of pulsed electrochemical detection modes coupled with microchip capillary electrophoresis. Electroanalysis, 17, 223–229.

    Article  Google Scholar 

  5. Garcia, C. D., & Henry, C. S. (2005). Coupling capillary electrophoresis with pulsed amperometric detection. Electroanalysis, 17, 1125–1131.

    Article  Google Scholar 

  6. Ding, Y., Ayon, A., & Garcia, C. D. (2007). Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis. Analytica Chimica Acta, 584, 244–251.

    Article  Google Scholar 

  7. Ding, Y., & Garcia, C. D. (2006). Pulsed amperometric detection with poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips for the determination of EPA priority pollutants. Analyst, 131, 208–214.

    Article  Google Scholar 

  8. Ding, Y., Mora, M. F., Merrill, G. N., & Garcia, C. D. (2007). The effects of alkyl sulfates on the analysis of phenolic compounds by microchip capillary electrophoresis with pulsed amperometric detection. Analyst, 132, 997–1004.

    Article  Google Scholar 

  9. Ding, Y., & García, C. D. (2006). Determination of non-steroidal anti-inflammatory drugs in serum by capillary electrophoresis microchip and electrochemical detection. Electroanalysis, 18, 2202–2209.

    Article  Google Scholar 

  10. Ding, Y., Mora, M. F., & Garcia, C. D. (2006). Analysis of alkyl gallates and nordihydroguaiaretic acid using plastic capillary electrophoresis—microchips. Analytica Chimica Acta, 561, 126–132.

    Article  Google Scholar 

  11. Garcia, C. D., & Henry, C. S. (2003). Henry, direct determination of carbohydrates, amino acids and antibiotics by microchip electrophoresis with pulsed amperometric detection. Analytical Chemistry, 75, 4778–4783.

    Article  Google Scholar 

  12. Garcia, C. D., & Henry, C. S. (2004). Enhanced determination of glucose by microchip electrophoresis with pulsed amperometric detection. Analytica Chimica Acta, 508, 1–9.

    Article  Google Scholar 

  13. Garcia, C. D., & Henry, C. S. (2004). Direct detection of renal function markers using microchip ce with pulsed electrochemical detection. Analyst, 129, 579–584.

    Article  Google Scholar 

  14. Garcia, C. D., Dressen, B. M., Henderson, A., & Henry, C. S. (2005). Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips. Electrophoresis, 26, 703–709.

    Article  Google Scholar 

  15. García, C. D., Engling, G., Herckes, P., Collett, J. L., Jr., & Henry, C. S. (2005). Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection. Environmental Science and Technology, 39, 618–623.

    Article  Google Scholar 

  16. Ding, Y., & Garcia, C. D. (2006). Application of microchip—capillary electrophoresis to follow the degradation of phenolic acids by aquatic plants. Electrophoresis, 27, 5119–5127.

    Article  Google Scholar 

  17. Ejlali, A., & Ghassem Miremadi, S. (2004). FPGA-based fault injection into switch-level models. Microprocessors and Microsystems, 28, 317.

    Article  Google Scholar 

  18. Jennison, M., Alper, B., Dorling, S., Fullard, K., Horton, A., Lucock, R., et al. (2006). Development review of transient recorders with onboard isolation on JET. Fusion Engineering and Design, 81, 1879.

    Article  Google Scholar 

  19. Maguire, L. P., McGinnity, T. M., Glackin, B., Ghani, A., Belatreche, A., & Harkin, J. (2007). Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing, 71, 13.

    Article  Google Scholar 

  20. Karimi, S., Poure, P., & Saadate, S. (2008). FPGA-based fully digital fast power switch fault detection and compensation for three-phase shunt active filters. Electric Power Systems Research, 78, 1933.

    Article  Google Scholar 

  21. Gu, Y., VanCourt, T., & Herbordt, M. C. (2008). Explicit design of FPGA-based coprocessors for short-range force computations in molecular dynamics simulations. Parallel Computing, 34, 261.

    Article  Google Scholar 

  22. Valdez, D. C. (2008). Wireless control of microchip capillary electrophoresis with a mobile platform utilizing a field programmable gate array. In Electrical engineering. San Antonio, TX: The University of Texas at San Antonio.

  23. Upegui, A., Pena-Reyes, C. A., & Sanchez, E. (2005). An FPGA platform for on-line topology exploration of spiking neural networks. Microprocessors and Microsystems, 29, 211–223.

    Article  Google Scholar 

  24. Jackson, D. J., Naber, J. F., Roussel, T. J., Jr., Crain, M. M., Walsh, K. M., Keynton, R. S., et al. (2003). Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. Analytical Chemistry, 75, 3311–3317.

    Article  Google Scholar 

  25. Zerbinati, O. (2003). Power supply for capillary electrophoresis. Analytica Chimica Acta, 93, 325–327.

    Google Scholar 

  26. Hartman, D. R., & Courtney, W. H. (1990). Economical electrophoresis with a controlled-current power supply. Journal of Chemical Education, 67, 703.

    Article  Google Scholar 

  27. Garcia, C. D., Liu, Y., Anderson, P., & Henry, C. S. (2003). Versatile 3-channel high-voltage power supply for microchip capillary electrophoresis. Lab Chip, 3, 331–335.

    Article  Google Scholar 

  28. Jiang, L., Jiang, X., Lu, Y., Dai, Z., Xie, M., Qin, J., et al. (2007). Development of a universal serial bus-powered mini-high-voltage power supply for microchip electrophoresis. Electrophoresis, 28, 1259–1264.

    Article  Google Scholar 

  29. Tang, M., Liu, A. Q., Agarwal, A., Liu, Z. S., & Lu, C. (2005). A single-pole double-throw (SPDT) circuit using lateral metal-contact micromachined switches. Sensors and Actuators A, 121, 187–196.

    Article  Google Scholar 

  30. Martin, R. S., Ratzlaff, K. L., Huynh, B. H., & Lunte, S. M. (2002). In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. Analytical Chemistry, 74, 1136–1143.

    Article  Google Scholar 

  31. Klett, O., & Nyholm, L. (2003). Separation high voltage field driven on-chip amperometric detection in capillary electrophoresis. Analytical Chemistry, 75, 1245–1250.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dev Palmer, Technical Manager of the U.S. Army Research Office for the financial support provided for this project. The cooperation of the staff of the MEMS Research Laboratory at UTSA is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo A. Ayon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdez, D.C., Garcia, C.D. & Ayon, A.A. Implementation of a field programmable gate array for wireless control of a lab-on-a-robot . Analog Integr Circ Sig Process 71, 29–38 (2012). https://doi.org/10.1007/s10470-010-9577-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9577-2

Keywords

Navigation