Skip to main content
Log in

Bayesian model selection for a linear model with grouped covariates

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Model selection for normal linear regression models with grouped covariates is considered under a class of Zellner’s \(g\)-priors. The marginal likelihood function is derived under the proposed priors, and a simplified closed-form expression is given assuming the commutativity of the projection matrices from the design matrices. As illustration, the marginal likelihood functions of the balanced \(q\)-way ANOVA models, either solely with main effects or with all interaction effects, are calculated using the closed-form expression. The performance of the proposed priors in model comparison problems is demonstrated by simulation studies on two-way ANOVA models and by two real data studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baksalary, J. K. (1987). Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors. In T. Pukkila, S. Puntanen (Eds.), Proceedings of the second international Tampere conference in statistics (pp. 113–142, 1–4 June 1987). Tampere: Department of Mathematical Sciences/Statistics, University of Tampere.

  • Baksalary, J. K., Baksalary, O. M., Szulc, T. (2002). A property of orthogonal projectors. Linear Algebra and Its Applications, 354, 35–39.

  • Bayarri, M. J., Berger, J. O., Forte, A., García-Donato, G. (2012). Criteria for Bayesian model choice with application to variable selection. The Annals of Statistics, 40(3), 1550–1577.

  • Bayarri, M. J., García-Donato, G. (2007). Extending conventional priors for testing general hypotheses in linear models. Biometrika, 94(1), 135–152.

  • Berger, J. O., Bayarri, M. J., Pericchi, L. R. (2014). The effective sample size. Econometric Reviews, 33, 197–217.

  • Berger, J. O., Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91(433), 109–122.

  • Berger, J. O. Pericchi, L. R. (2001). Objective Bayesian methods for model selection: introduction and comparison. In P. Lahiri (Ed.), Model selection, volume 38 of IMS Lecture Notes—Monograph Series (pp. 135–207). Institute of Mathematical Statistics.

  • Berger, J. O., Pericchi, L. R., Varshavsky, J. A. (1998). Bayes factors and marginal distributions in invariant situations. Sankhya: The Indian Journal of Statistics Series A 60(3), 307–321.

  • Deltell, A. F. (2011). Objective Bayes criteria for variable selection. Ph.D. thesis, Universidad de València.

  • Dickey, J. (1971). The weighted likelihood ratio, linear hypotheses on normal location parameters. The Annals of Statistics, 42, 204–223.

  • Fernández, C., Ley, E., Steel, M. F. J. (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics, 100(2), 381–427.

  • García-Donato, G., Sun, D. (2007). Objective priors for hypothesis testing in one-way random effects models. The Canadian Journal of Statistics, 35(2), 303–320.

  • Gelfand, A. E., Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398–409.

  • Gelman, A. (2005). Analysis of variance why it is more important than ever. The Annals of Statistics, 33(1), 1–53.

    Article  MathSciNet  MATH  Google Scholar 

  • George, E. I., McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889.

  • Guo, R., Speckman, P. L. (2009). Bayes factor consistency in linear models. In: The 2009 international workshop on objective Bayes methodology, Philadelphia, 5–9 June 2009.

  • Hald, A. (1952). Statistical theory with engineering applications. New York: Wiley.

    MATH  Google Scholar 

  • Jeffreys, H. (1961). Theory of probability. New York: Oxford University Press.

    MATH  Google Scholar 

  • Kass, R. E., Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.

  • Liang, F., Paulo, R., Molina, G., Clyde, M. A., Berger, J. O. (2008). Mixtures of \(g\)-priors for Bayesian variable selection. Journal of the American Statistical Association, 103(481), 410–423.

  • Maruyama, Y., George, E. I. (2011). Fully Bayes factors with a generalized \(g\)-prior. Annals of Statistics, 39(5), 2740–2765.

  • Park, T., Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482), 681–686.

  • Pérez, J. M., Berger, J. O. (2002). Expected-posterior prior distributions for model selection. Biometrika, 89(3), 491.

  • Raftery, A. E., Madigan, D., Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437), 179–191.

  • Rao, C. R., Yanai, H. (1979). General definition and decomposition of projectors and some applications to statistical problems. Journal of Statistical Planning and Inference, 3, 1–17.

  • Scott, J. G., Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics, 38, 2587–2619.

  • Searle, S., Casella, G., McCulloch, C. (1992). Variance components. Wiley series in probability and statistics. New York: Wiley.

  • Sun, D., Speckman, P. L., Liu, F., Rouder, J. N. (2010). One-way ANOVA, fixed effects or random? (unpublished manuscript).

  • Vandaele, W. (1978). Participation in illegitimate activities: Ehrlich revisited. In A. Blumstein, J. Cohen, D. Nagin (Eds.), Deterrence and incapacitation: estimating the effects of criminal sanctions on crime rates (pp. 270–335). National Academy of Sciences.

  • Verdinelli, I., Wasserman, L. (1995). Computing Bayes factors using a generalization of the Savage–Dickey density ratio. Journal of the American Statistical Association, 90(430), 614–618.

  • Wood, H., Steinour, H. H., Starke, H. R. (1932). Effect of composition of portland cement on heat evolved during hardening. Industrila and Engineering Chemistry, 24(11), 1207–1214.

  • Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with \(g\)-prior distributions. In P. K. Goel, A. Zellner (Eds.), Bayesian inference and decision techniques: essays in honor of Bruno de Finetti (pp. 233–243). New York/Amsterdam: Elsevier/North-Holland.

  • Zellner, A., Siow, A. (1980). Posterior odds ratios for selected regression hypothesis. In J. M. Bernardo, M. H. Degroot, D. V. Lindley, A. F. M. Smith (Eds.), Bayesian statistics: proceedings of the first international meeting held in Valencia (pp. 585–603). Valencia: University of Valencia Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Min.

Additional information

Most of the work was done while Xiaoyi Min was a graduate student at the University of Missouri. This research was supported in part by NSF Grants DMS-1007874 SES-1024080, SES-1260806, and NIH Grant R01DA016750.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10463_2015_518_MOESM1_ESM

Appendices

Appendix A: Proof of Theorem 1

Note that

$$\begin{aligned} m(\varvec{y}\mid \varvec{g})= & {} \int _{0}^{\infty }{ \frac{1}{\sigma ^2} \frac{1}{(2\pi \sigma ^2)^{n/2}} \prod _{j=1}^{m}{\left[ \frac{|\varvec{X}_j'\varvec{X}_j|^{1/2}}{(2\pi g_j \sigma ^2)^{p_j/2}}\right] }} \nonumber \\&\int {\exp {\left\{ -\frac{1}{2\sigma ^2} [ (\varvec{y}-\varvec{X}\varvec{\beta })'(\varvec{y}-\varvec{X}\varvec{\beta })+ \varvec{\beta }'\varvec{M}\varvec{\beta }]\right\} }\mathrm{d}\varvec{\beta }\mathrm{d}\sigma ^2}. \end{aligned}$$

If we write \(\tilde{\varvec{\beta }} = (\varvec{X}'\varvec{X}+\varvec{M})^{-1}\varvec{X}'\varvec{y},\)

$$\begin{aligned} (\varvec{y}-\varvec{X}\varvec{\beta })'(\varvec{y}-\varvec{X}\varvec{\beta }) +\varvec{\beta }'\varvec{M}\varvec{\beta }= (\varvec{\beta }-\tilde{\varvec{\beta }})'(\varvec{X}'\varvec{X}+\varvec{M}) (\varvec{\beta }-\tilde{\varvec{\beta }})+\varvec{y}'\varvec{R}\varvec{y}, \end{aligned}$$

where \(\varvec{R}\) is defined by (11). Therefore,

$$\begin{aligned} m(\varvec{y}\mid \varvec{g})= & {} \int _{0}^{\infty } \frac{\exp {\left( -\frac{1}{2\sigma ^2}\varvec{y}'\varvec{R}\varvec{y}\right) }}{(2\pi )^{\frac{n-p_0}{2}} (\sigma ^2)^{\frac{n-p_0}{2}+1} |\varvec{X}'\varvec{X}+\varvec{M}|^{\frac{1}{2}}} \prod _{j=1}^{m} {\left( \frac{|\varvec{X}_j'\varvec{X}_j|^{1/2}}{g_j^{p_j/2}}\right) } \mathrm{d}(\sigma ^2) \nonumber \\= & {} \frac{1}{(2\pi )^{\frac{n-p_0}{2}} |\varvec{X}'\varvec{X}+\varvec{M}|^{\frac{1}{2}}} \prod _{j=1}^{m} {\left( \frac{|\varvec{X}_j'\varvec{X}_j|^{1/2}}{g_j^{p_j/2}}\right) } \Gamma \left( \frac{n-p_0}{2}\right) \left( \frac{2}{\varvec{y}'\varvec{R}\varvec{y}}\right) ^{\frac{n-p_0}{2}}. \end{aligned}$$

This proves (10).

Appendix B: Proof of Theorem 2

To prove Theorem 2, we first derive some of the necessary results in the following lemma.

Lemma 2

Suppose that (13) holds.

  1. (a)

    Both \(\varvec{P}_{\varvec{\gamma }}\) in (14) and \(\varvec{A}_{\varvec{\gamma }}\) in (15) are projection matrices.

  2. (b)

    For any \(\varvec{\gamma }\ne \varvec{\gamma }^*\subseteq \{0,1,\ldots ,m\}\), we have \(\varvec{A}_{\varvec{\gamma }}\varvec{A}_{\varvec{\gamma }^*}=\mathbf {0}\).

  3. (c)

    We have the expression for the determinant,

    $$\begin{aligned} \left| \varvec{I}_n+\sum _{j=1}^{m}{g_j(\varvec{I}_n-\varvec{P}_0)\varvec{P}_j}\right| = \prod _{\varvec{\gamma }\in \varvec{\Gamma }}{\left( 1+ \sum _{j \in \varvec{\gamma }}{g_j}\right) ^{p_{\varvec{\gamma }}}}. \end{aligned}$$
    (22)
  4. (d)

    We have the expression for the inverse,

    $$\begin{aligned} \left[ \varvec{I}_n+\sum _{j=1}^{m}{g_j(\varvec{I}_n-\varvec{P}_0)\varvec{P}_j} \right] ^{-1} = \varvec{I}_n+\sum _{\varvec{\gamma }\in \varvec{\Gamma }} {u_{\varvec{\gamma }}(\varvec{I}_n-\varvec{P}_0)\varvec{P}_{\varvec{\gamma }}}, \end{aligned}$$
    (23)

    where \(u_{\varvec{\gamma }}\) is defined as in (18).

  5. (e)

    \(u_{\varvec{\gamma }}\) defined in (18) satisfies the following property: for any \(\varvec{\gamma }_0\in \varvec{\Gamma }\),

    $$\begin{aligned} \sum _{\emptyset \ne \varvec{\gamma }\subseteq \varvec{\gamma }_0}{u_{\varvec{\gamma }}} =-1+\frac{1}{1+\sum _{j\in \varvec{\gamma }_0}{g_j}}. \end{aligned}$$
    (24)

Proof

Parts (a) and (b) are easy. For Part (c), the identity matrix \(\varvec{I}_n\) can be decomposed as \(\varvec{I}_n=\sum _{\varvec{\gamma }\subseteq \{0,\ldots ,m\}}{\varvec{A}_{\varvec{\gamma }}}\). Since \((\varvec{I}_n-\varvec{P}_0)\varvec{P}_j=\sum _{\varvec{\gamma }\in \varvec{\Gamma }:j\in \varvec{\gamma }}{\varvec{A}_{\varvec{\gamma }}}\), we know that

$$\begin{aligned} \varvec{I}_n+\sum _{j=1}^{m}{g_j(\varvec{I}_n-\varvec{P}_0)\varvec{P}_j}= \sum _{\varvec{\gamma }\notin \varvec{\Gamma }}{\varvec{A}_{\varvec{\gamma }}}+ \sum _{\varvec{\gamma }\in \varvec{\Gamma }}{\varvec{A}_{\varvec{\gamma }}} \left( 1+\sum _{j:j \in \varvec{\gamma }}{g_j}\right) . \end{aligned}$$

\(\forall \varvec{\gamma }\subseteq \{0,\ldots ,m\}\), \(\varvec{A}_{\varvec{\gamma }}\) is idempotent and symmetric, whose eigenvalues are \(p_{\varvec{\gamma }}\) \(1\)’s and \((n-p_{\varvec{\gamma }})\) \(0\)’s. Therefore, there is an \(n\times p_{\varvec{\gamma }}\) matrix \(\varvec{B}_{\varvec{\gamma }}\) (if \(p_{\varvec{\gamma }}=0\), we let \(\varvec{B}_{\varvec{\gamma }}\) be a null matrix) such that \(\varvec{A}_{\varvec{\gamma }}=\varvec{B}_{\varvec{\gamma }}\varvec{B}_{\varvec{\gamma }}'\) and \(\varvec{B}_{\varvec{\gamma }}'\varvec{B}_{\varvec{\gamma }}=\varvec{I}_{p_{\varvec{\gamma }}}\). Note that for \(\varvec{\gamma }^*\ne \varvec{\gamma }\), \(\varvec{B}_{\varvec{\gamma }}'\varvec{B}_{\varvec{\gamma }^*}=\mathbf {0}_{p_{\varvec{\gamma }}\times p_{\varvec{\gamma }^*}}\). Further, if \(\varvec{\gamma }\in \varvec{\Gamma }\), write \(\varvec{C}_{\varvec{\gamma }}=\sqrt{1+\sum _{j \in \varvec{\gamma }}{g_j}}\varvec{B}_{\varvec{\gamma }};\) if \(\varvec{\gamma }\notin \varvec{\Gamma }\), define \(\varvec{C}_{\varvec{\gamma }}=\varvec{B}_{\varvec{\gamma }}.\) We then combine all \(\varvec{C}_{\varvec{\gamma }}\)’s side-by-side into an \(n\times n\) matrix \(\varvec{C}\) and get \(\bigg |\varvec{I}_n+\sum _{j=1}^{m}{g_j(\varvec{I}_n-\varvec{P}_0)\varvec{P}_j}\bigg |=|\varvec{C}\varvec{C}'|=|\varvec{C}'\varvec{C}|\), and (22) follows by noting that \(\varvec{C}'\varvec{C}\) is a block diagonal matrix with the diagonal parts being \((1+\sum _{j \in \varvec{\gamma }}{g_j})\varvec{I}_{p_{\varvec{\gamma }}}\) if \(\varvec{\gamma }\in \varvec{\Gamma }\), and \(\varvec{I}_{p_{\varvec{\gamma }}}\), otherwise.

For Part (d), note that

$$\begin{aligned} (\varvec{I}_n-\varvec{P}_0)\varvec{P}_{\varvec{\gamma }}(\varvec{I}_n-\varvec{P}_0)\varvec{P}_j= \left\{ \begin{array}{ll} (\varvec{I}_n-\varvec{P}_0)\varvec{P}_{\varvec{\gamma }}, &{}\quad \mathrm{if}~~j\in \varvec{\gamma }, \\ (\varvec{I}_n-\varvec{P}_0)\varvec{P}_{\varvec{\gamma }\cup \{j\}}, &{}\quad \mathrm{if}~~j\notin \varvec{\gamma }. \end{array} \right. \end{aligned}$$

Consider the product of \((\varvec{I}_n\!+\!\sum _{j\!=\!1}^{m}{g_j(\varvec{I}_n\!-\!\varvec{P}_0)\varvec{P}_j})\) and \((\varvec{I}_n\!+\sum _{\varvec{\gamma }\in \varvec{\Gamma }}{u_{\varvec{\gamma }} (\varvec{I}_n-\varvec{P}_0)\varvec{P}_{\varvec{\gamma }}})\), the coefficient before each term \((\varvec{I}_n-\varvec{P}_0)\varvec{P}_{\varvec{\gamma }}\) should be zero. We use mathematical induction to prove (23). For \((\varvec{I}_n-\varvec{P}_0)\varvec{P}_{\{j\}}\), we have \(g_j+u_{\{j\}}+g_ju_{\{j\}}=0.\) This implies that \(u_{\{j\}}=-g_j/(1+g_j)\), so (18) holds when \(|\varvec{\gamma }|=1\). For \((\varvec{I}_n-\varvec{P}_0)\varvec{P}_{\varvec{\gamma }}\) with \(|\varvec{\gamma }|=k\ge 2\), if (18) holds for \(|\varvec{\gamma }|=k-1\), we have \(u_{\varvec{\gamma }}+\sum _{j\in \varvec{\gamma }}{g_j(u_{\varvec{\gamma }}+u_{\varvec{\gamma }\setminus \{j\}})}=0\), which implies that

$$\begin{aligned} u_{\varvec{\gamma }}=-\frac{\sum _{j\in \varvec{\gamma }} {g_ju_{\varvec{\gamma }\setminus \{j\}}}}{1+\sum _{j\in \varvec{\gamma }}{g_j}}. \end{aligned}$$

The conclusion (18) also holds for \(|\varvec{\gamma }|=k\). Thus, (23) and (18) are proved.

For Part (e), without loss of generality, we only prove (24) for \(\varvec{\gamma }_0=\{1,\ldots ,k\}\). In fact,

$$\begin{aligned} \sum _{\emptyset \ne \varvec{\gamma }\subseteq \{1,\ldots ,k\},}{u_{\varvec{\gamma }}}= & {} \sum _{j_1}{ \left( \frac{-g_{j_1}}{1+g_{j_1}} \left( 1+\sum _{j_2}{\frac{-g_{j_2}}{1+g_{j_1}+g_{j_2}} \left( \cdots \left( 1+\sum _{j_k}{\frac{-g_{j_k}}{1+g_{j_1}+\cdots +g_{j_k}}} \right) \cdots \right) } \right) \right) } \\= & {} \sum _{j_1}{ \left( \frac{-g_{j_1}}{1+g_{j_1}} \left( \cdots \left( 1+\sum _{j_{k-1}}{\frac{-g_{j_{k-1}}}{1+g_{j_1}+\cdots +g_{j_{k-1}}}} \left( \frac{1+g_{j_1}+\cdots +g_{j_{k-1}}}{1+g_1+\cdots +g_k} \right) \right) \cdots \right) \right) }\\= & {} \sum _{j_1} \left( \frac{-g_{j_1}}{1+g_{j_1}} \left( 1+\sum _{j_2}{\frac{-g_{j_2}}{1+g_{j_1}+g_{j_2}}} \left( \cdots \left( \frac{1+g_{j_1}+\cdots +g_{j_{k-2}}}{1+g_1+\cdots +g_k} \right) \cdots \right) \right) \right) . \end{aligned}$$

By the induction, we have

$$\begin{aligned} \sum _{\emptyset \ne \varvec{\gamma }\subseteq \{1,\ldots ,k\}}{u_{\varvec{\gamma }}}= & {} \sum _{j_1}{ \left( \frac{-g_{j_1}}{1+g_{j_1}} \frac{1+g_{j_1}}{1+g_1+\cdots +g_k} \right) }\\= & {} \frac{-(g_1+\cdots +g_k)}{1+g_1+\cdots +g_k} ~=~-1+ \frac{1}{1+g_1+\cdots +g_k}. \end{aligned}$$

The lemma is proved. \(\square \)

Now we are ready to prove Theorem 2. To calculate \(\varvec{R}\), we write

$$\begin{aligned} \varvec{D}=\left( \begin{array}{ll} \varvec{I}_{p_0} &{} \mathbf {0} \\ -(\varvec{X}^{*})'\varvec{X}_0(\varvec{X}_0'\varvec{X}_0)^{-1} &{} \varvec{I}_{p_1+\cdots +p_m} \end{array} \right) , \end{aligned}$$
(25)

where \(\varvec{X}^*\) is defined in (8). Then \(\varvec{R}= \varvec{I}_n-\varvec{X}\varvec{D}'[\varvec{D}(\varvec{X}'\varvec{X})\varvec{D}'+\varvec{D}\varvec{M}\varvec{D}']^{-1}\varvec{D}\varvec{X}'\). We get \([\varvec{D}(\varvec{X}'\varvec{X})\varvec{D}'+\varvec{D}\varvec{M}\varvec{D}']^{-1}= \mathrm{diag}( (\varvec{X}_0'\varvec{X}_0)^{-1}, ~ (\varvec{X}^{*'}(\varvec{I}_n-\varvec{P}_0)\varvec{X}^*+\varvec{M}_1)^{-1})\). Define \(\tilde{\varvec{X}}=(\varvec{I}_n-\varvec{P}_0)\varvec{X}^*,\) then \(\varvec{R}=(\varvec{I}_n-\varvec{P}_0)-\tilde{\varvec{X}}(\tilde{\varvec{X}}'\tilde{\varvec{X}}+\varvec{M}_1)^{-1}\tilde{\varvec{X}}'\). Use the fact that for invertible matrices \(\varvec{\Phi }\) and \(\varvec{\Delta }\), \((\varvec{\Phi }+\varvec{\omega }\varvec{\Delta }\varvec{\omega }')^{-1}=\varvec{\Phi }^{-1}-\varvec{\Phi }^{-1}\varvec{\omega }(\varvec{\Delta }^{-1}+\varvec{\omega }'\varvec{\Phi }^{-1}\varvec{\omega })^{-1}\varvec{\omega }'\varvec{\Phi }^{-1}\), and define \(\varvec{O}=\tilde{\varvec{X}}\varvec{M}_1^{-1}\tilde{\varvec{X}}'\), then

$$\begin{aligned} \tilde{\varvec{X}}(\tilde{\varvec{X}}'\tilde{\varvec{X}}+\varvec{M}_1)^{-1}\tilde{\varvec{X}}' = \varvec{O}-\varvec{O}(\varvec{I}_n+\varvec{O})^{-1}\varvec{O}=\varvec{I}_n-(\varvec{I}_n+\varvec{O})^{-1}. \end{aligned}$$
(26)

Also,

$$\begin{aligned}&\varvec{I}_n+\varvec{O}= \varvec{I}_n+(\varvec{I}_n-\varvec{P}_0)\varvec{X}^*\varvec{M}_1^{-1}\varvec{X}^{*'}(\varvec{I}_n-\varvec{P}_0) \nonumber \\&=\varvec{I}_n+(\varvec{I}_n-\varvec{P}_0)\left( \sum _{j=1}^{m}{g_j\varvec{P}_j}\right) (\varvec{I}_n-\varvec{P}_0) ~ =~\varvec{I}_n+\sum _{j=1}^{m}{g_j(\varvec{I}_n-\varvec{P}_0)\varvec{P}_j}.\qquad \end{aligned}$$
(27)

Applying (27) and (23) to (26), we get \(\tilde{\varvec{X}}(\tilde{\varvec{X}}'\tilde{\varvec{X}}+\varvec{M}_1)^{-1}\tilde{\varvec{X}}' \!=\!-\sum _{\varvec{\gamma }\in \varvec{\Gamma }}{u_{\varvec{\gamma }}(\varvec{I}_n\!-\!\varvec{P}_0)\varvec{P}_{\varvec{\gamma }}}\). This proves (17). Next, we calculate \(|\varvec{X}'\varvec{X}+\varvec{M}|\). For \(\varvec{D}\) defined in (25), \(|\varvec{X}'\varvec{X}+\varvec{M}|=|\varvec{D}\varvec{X}'\varvec{X}\varvec{D}'+\varvec{D}\varvec{M}\varvec{D}'| = |\varvec{X}_0'\varvec{X}_0|\,|\tilde{\varvec{X}}' \tilde{\varvec{X}}+ \varvec{M}_1|\). Using the identity \(|\varvec{\omega }\varvec{\Delta }\varvec{\omega }'+\varvec{\Phi }|=|\varvec{\Delta }|\,|\varvec{\Phi }|\,|\varvec{\Delta }^{-1}+\varvec{\omega }'\varvec{\Phi }^{-1}\varvec{\omega }|,\) we have

$$\begin{aligned} |\varvec{X}'\varvec{X}+\varvec{M}|= & {} |\varvec{X}_0'\varvec{X}_0|\,|\varvec{M}_1|\,|\varvec{I}_n +\tilde{\varvec{X}} \varvec{M}_1^{-1} \tilde{\varvec{X}}'| \nonumber \\= & {} \prod _{j=0}^{m} {|\varvec{X}_j'\varvec{X}_j|} \left( \prod _{j=1}^{m} {g_j^{-p_j}}\right) \left| \varvec{I}_n+ \sum _{j=1}^{m} {g_j(\varvec{I}_n-\varvec{P}_0) \varvec{P}_j}\right| . \end{aligned}$$

By Part (c) of Lemma 2,

$$\begin{aligned} |\varvec{X}'\varvec{X}+\varvec{M}|=\prod _{j=0}^{m} {|\varvec{X}_j'\varvec{X}_j|} \left( \prod _{j=1}^{m} {g_j^{-p_j}} \right) \prod _{\varvec{\gamma }\in \varvec{\Gamma }} {\left( 1+\sum _{j \in \varvec{\gamma }} {g_j}\right) ^{p_{\varvec{\gamma }}}}. \end{aligned}$$
(28)

The conclusion (16) follows by plugging (28) into (10). The theorem is proved.

Appendix C: Proof of Theorem 3

For each \(\varvec{\gamma }\in \varvec{\Gamma }\), define \(\xi _{\varvec{\gamma }}=\xi (\varvec{\gamma })=\bigcap _{\xi \in \varvec{\gamma }}{\xi }\). We first show that for any \(\varvec{\gamma }\in \varvec{\Gamma }\),

$$\begin{aligned} \varvec{A}_{\varvec{\gamma }}\ne \mathbf {0} \Rightarrow \varvec{\gamma }=\{\tau :\tau \supseteq \xi (\varvec{\gamma })\}. \end{aligned}$$
(29)

In fact, by the definition of \(\xi (\varvec{\gamma })\), \(\forall \tau \in \varvec{\gamma },~\xi (\varvec{\gamma }) \subseteq \tau \). On the other hand, if \(\exists \tau \supseteq \xi (\varvec{\gamma }) ~ \mathrm{s.t.}~\tau \notin \varvec{\gamma }\), then \((\varvec{I}_n-\varvec{P}_{\tau })\varvec{P}_{\xi _{\varvec{\gamma }}}=\mathbf {0}_{n\times n}\) in \(\varvec{A}_{\varvec{\gamma }}\). So (29) holds. Therefore, \(\forall \varvec{A}_{\varvec{\gamma }}\ne \mathbf {0}\),

$$\begin{aligned} \varvec{A}_{\varvec{\gamma }} =\varvec{P}_{\xi _{\varvec{\gamma }}}\prod _{\tau \subsetneq \xi _{\varvec{\gamma }}} {(\varvec{I}_n-\varvec{P}_{\tau })} = \prod _{\tau \subsetneq \xi _{\varvec{\gamma }}} {(\varvec{P}_{\xi _{\varvec{\gamma }}}-\varvec{P}_{\tau \cap \xi _{\varvec{\gamma }}})} = \prod _{j\in \xi _{\varvec{\gamma }}} {(\varvec{P}_{\xi _{\varvec{\gamma }}}-\varvec{P}_{\xi _{\varvec{\gamma }}\setminus \{j\}})}, \end{aligned}$$

so \(p_{\varvec{\gamma }}=\sum _{\tau \subseteq \xi _{\varvec{\gamma }}} {(-1)^{|\xi _{\varvec{\gamma }}|-|\tau |}p_{\tau }}\). In (16),

$$\begin{aligned} \prod _{\varvec{\gamma }\in \varvec{\Gamma }} {\left( 1+\sum _{j \in \varvec{\gamma }}{g_j}\right) ^{-p_{\varvec{\gamma }}/2}}= \prod _{\emptyset \ne \xi \subseteq \{1,\ldots ,q\}} {\left( 1+\sum _{\tau \supseteq \xi }{g_{\tau }}\right) }^{-\frac{1}{2} \sum _{\tau ^*\subseteq \xi } {(-1)^{|\xi |-|\tau ^*|}p_{\tau ^*}}}. \end{aligned}$$

Next, we need to calculate \(\varvec{R}\) in this case. In (17), \(\varvec{P}_{\varvec{\gamma }}=\prod _{\xi \in \varvec{\gamma }}{\varvec{P}_{\xi }} =\varvec{P}_{\xi _{\varvec{\gamma }}}\). Therefore, in (17),

$$\begin{aligned} \sum _{\varvec{\gamma }\in \varvec{\Gamma }} {u_{\varvec{\gamma }}(\varvec{I}_n-\varvec{P}_{\varvec{\phi }})\varvec{P}_{\varvec{\gamma }}}= \sum _{\emptyset \ne \tau \subseteq \{1,2,\ldots ,q\}} {\left( (\varvec{I}_n-\varvec{P}_{\varvec{\phi }})\varvec{P}_{\tau } \sum _{\varvec{\gamma }:\xi (\varvec{\gamma })=\tau }{u_{\varvec{\gamma }}}\right) }. \end{aligned}$$

The theorem will be proved given the following lemma.

Lemma 3

For nonempty \(\tau \subseteq \{1,2,\ldots ,q\}\), define \(U'_{\tau }=\sum _{\varvec{\gamma }\in \varvec{\Gamma }:\xi (\varvec{\gamma })=\tau }{u_{\varvec{\gamma }}}\). Then we have

$$\begin{aligned} \sum _{\tau ^*\supseteq \tau }{U'_{\tau ^*}}= & {} -1+\frac{1}{1+\sum _{\tau ^*\supseteq \tau }{g_{\tau ^*}}}.\end{aligned}$$
(30)
$$\begin{aligned} U'_{\tau }= & {} \left\{ \begin{array}{ll} \sum _{\tau ^*\supseteq \tau } {(-1)^{|\tau ^*|-|\tau |} \frac{1}{1+\sum _{\tau ^{**}\supseteq \tau ^*}{g_{\tau ^{**}}}}}, &{}\quad \text{ if } \,\,\tau \subsetneq \{1,\ldots ,q\}, \\ -1+\frac{1}{1+g_{\{1,\ldots ,q\}}}, &{}\quad \text{ if } \,\,\tau = \{1,\ldots ,q\}. \end{array} \right. \end{aligned}$$
(31)

Proof

For (30), note that for any \(\varvec{\gamma }\in \varvec{\Gamma }\), \(\xi (\varvec{\gamma })\supseteq \tau \Leftrightarrow \varvec{\gamma }\subseteq \{\tau ^*:\tau ^*\supseteq \tau \}\). Therefore, using Lemma 2(e), we get

$$\begin{aligned} \sum _{\tau ^*\supseteq \tau }{U'_{\tau ^*}}= \sum _{\emptyset \ne \varvec{\gamma }\subseteq \{ \tau ^*:\tau ^*\supseteq \tau \}} {u_{\varvec{\gamma }}} = -1+\frac{1}{1+\sum _{\tau ^*\supseteq \tau }{g_{\tau ^*}}}. \end{aligned}$$

For (31), we use mathematical induction. If \(\tau =\{1,\ldots ,q\}\), (31) is exactly (30). If \(\tau =\{1,\ldots ,q-1\}\) , from (30), we have \(U'_{\{1,\ldots ,q\}}+U'_{\{1,\ldots ,q-1\}} =-1+1/(1+g_{\{1,\ldots ,q-1\}}+g_{\{1,\ldots ,q\}})\), which implies that

$$\begin{aligned} U'_{\{1,\ldots ,q-1\}}= \frac{1}{1+g_{\{1,\ldots ,q-1\}}+g_{\{1,\ldots ,q\}}}- \frac{1}{1+g_{\{1,\ldots ,q\}}}. \end{aligned}$$

This proves that (31) holds for \(\tau \) with \(|\tau |=q-1\). Clearly, (30) implies a recursive formula,

$$\begin{aligned} U'_{\tau }= -1+\frac{1}{1+\sum _{\tau ^*\supseteq \tau }{g_{\tau ^*}}}- \sum _{\tau ^*\supsetneq \tau }{U'_{\tau ^*}}. \end{aligned}$$

Suppose (31) holds for \(\tau \) with \(|\tau |=k+1\), then

$$\begin{aligned} U'_{\{1,\ldots ,k\}}= & {} -1+\frac{1}{1+\sum _{\tau \supseteq \{1,\ldots ,k\}} {g_{\tau }}}- \sum _{\tau \supsetneq \{1,\ldots ,k\}}{U'_{\tau }} \nonumber \\= & {} \frac{1}{1+\sum _{\tau \supseteq \{1,\ldots ,k\}} {g_{\tau }}}- \sum _{\tau \supsetneq \{1,\ldots ,k\}} {\left( \sum _{\tau ^*\supseteq \tau } {(-1)^{|\tau ^*|-|\tau |} \frac{1}{1+\sum _{\tau ^{**}\supseteq \tau ^*} {g_{\tau ^{**}}}}} \right) } \nonumber \\= & {} \frac{1}{1+\sum _{\tau \supseteq \{1,\ldots ,k\}} {g_{\tau }}}\\&- \sum _{\tau ^*\supsetneq \{1,\ldots ,k\}} \left( \frac{1}{1+\sum _{\tau ^{**}\supseteq \tau ^*} {g_{\tau ^{**}}}}\left( \sum _{\tau :\tau ^*\supseteq \tau \supsetneq \{1,\ldots ,k\}} {(-1)^{|\tau ^*|-|\tau |}}\right) \right) \nonumber \\= & {} \frac{1}{1+\sum _{\tau \supseteq \{1,\ldots ,k\}} {g_{\tau }}}+ \sum _{\tau ^*\supsetneq \{1,\ldots ,k\}} {\left( \frac{1}{1+\sum _{\tau ^{**}\supseteq \tau ^*} {g_{\tau ^{**}}}} (-1)^{|\tau ^*|-k} \right) } \nonumber \\= & {} \sum _{\tau ^*\supseteq \{1,\ldots ,k\}} {\left( \frac{1}{1+\sum _{\tau ^{**}\supseteq \tau ^*} {g_{\tau ^{**}}}} (-1)^{|\tau ^*|-k} \right) }. \end{aligned}$$

Therefore, (31) holds for \(\tau \) with \(|\tau |=k\). Repeat this procedure recursively, we can show that (31) holds for any nonempty \(\tau \subsetneq \{1,\ldots ,q\}\). The lemma is proved. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, X., Sun, D. Bayesian model selection for a linear model with grouped covariates. Ann Inst Stat Math 68, 877–903 (2016). https://doi.org/10.1007/s10463-015-0518-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-015-0518-9

Keywords

Navigation