Skip to main content
Log in

The geometry of the Wilks’s Λ random field

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The statistical problem addressed in this paper is to approximate the P value of the maximum of a smooth random field of Wilks’s Λ statistics. So far results are only available for the usual univariate statistics (Z, t, χ2, F) and a few multivariate statistics (Hotelling’s T 2, maximum canonical correlation, Roy’s maximum root). We derive results for any differentiable scalar function of two independent Wishart random fields, such as Wilks’s Λ random field. We apply our results to a problem in brain shape analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler R.J. (1981). The geometry of random fields. Wiley, New York

    MATH  Google Scholar 

  • Adler R.J. (2000). On excursion sets, tube formulae and maxima of random fields. Annals of Applied Probability 10(1): 1–74

    MATH  MathSciNet  Google Scholar 

  • Adler R.J. and Hasofer A.M. (1976). Level crossings for random fields. Annals of Probability 4: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson T.W. (1984). An introduction to multivariate statistical analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Beaky M.M., Scherrer R.J. and Villumsen J.V. (1992). Topology of large scale structure in seeded hot dark matter models. Astrophysical Journal 387: 443–448

    Article  Google Scholar 

  • Cao J. and Worsley K.J. (1999). The detection of local shape changes via the geometry of hotelling’s t 2 fields. Annals of Statistics 27: 925–942

    Article  MATH  MathSciNet  Google Scholar 

  • Cao J. and Worsley K.J. (1999). The geometry of correlation fields with an application to functional connectivity of the brain. Annals of Applied Probability 9: 1021–1057

    Article  MATH  MathSciNet  Google Scholar 

  • Cao J., Worsley K.J. (2001). Applications of random fields in human brain mapping. In: Moore M. (eds). Spatial statists: Methodological aspects and applications. (pp. 169–182) Springer Lecture Notes in Statistics 159.

  • Friston K., Büchel C., Fink G.R., Morris J., Rolls E. and Dolan R.J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6: 218–229

    Article  Google Scholar 

  • Gott J.R., Park C., Juskiewicz R., Bies W.E., Bennett D.P., Bouchet F.R. and Stebbins A. (1990). Topology of microwave background fluctuations: Theory. Astrophysical Journal 352: 1–14

    Article  Google Scholar 

  • Hasofer A.M. (1978). Upcrossings of random fields. Advances in Applied Probability 10: 14–21

    Article  MathSciNet  Google Scholar 

  • Letac G. and Massam H. (2001). The moments of wishart laws, binary trees and the triple products. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 333(4): 377–382

    Article  MATH  MathSciNet  Google Scholar 

  • Magnus J.R. and Neudecker H. (1988). Matrix differential calculus with applications in statistics and econometrics. Wiley, New York

    MATH  Google Scholar 

  • Mardia K.V., Kent J.T. and Bibby J.M. (1979). Multivariate analysis. Academic Press, New York

    MATH  Google Scholar 

  • Muirhead R.J. (1982). Aspects of multivariate statistical theory. Wiley, New York

    Book  MATH  Google Scholar 

  • Neudecker H. (1969). Some theorems on matrix differentiation with special reference to kronecker matrix products. Journal of the American Statistical Association 64(327): 953–963

    Article  MATH  Google Scholar 

  • Olkin I. and Rubin H. (1962). A characterization of the wishart distribution. Annals of Mathematical Statistics 33(4): 1272–1280

    Article  MATH  MathSciNet  Google Scholar 

  • Shapiro S.S. and Gross A.J. (1981). Statistical modeling techniques. Marcel Dekker, New York

    MATH  Google Scholar 

  • Taylor J. and Worsley K. (2008). Random fields of multivariate test statistics, with an application to shape analysis. Annals of Statistics 36: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor J.E., Takemura A. and Adler R.J. (2005). Validity of the expected Euler characteristic heuristic. Annals of Probability 33(4): 1362–1396

    Article  MATH  MathSciNet  Google Scholar 

  • Tomaiuolo F., Worsley K.J., Lerch J., Di Paulo M., Carlesimo G.A., Bonanni R., Caltagirone C. and Paus T. (2005). Changes in white matter in long-term survivors of severe non-missile traumatic brain injury: A computational analysis of magnetic resonance images. Journal of Neurotrauma 22: 76–82

    Article  Google Scholar 

  • Vogeley M.S., Park C., Geller M.J., Huchira J.P. and Gott J.R. (1994). Topological analysis of the CfA redshift survey. Astrophysical Journal 420: 525–544

    Article  Google Scholar 

  • Worsley K.J. (1994). Local maxima and the expected euler characteristic of excursion sets of χ2, f and t fields. Advances in Applied Probability 26: 13–42

    Article  MATH  MathSciNet  Google Scholar 

  • Worsley K.J. (1995). Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Advances in Applied Probability 27: 943–959

    Article  MATH  MathSciNet  Google Scholar 

  • Worsley K.J. (1995). Estimating the number of peaks in a random field using the hadwiger characteristic of excursion sets, with applications to medical images. Annals of Statistics 23: 640–669

    Article  MATH  MathSciNet  Google Scholar 

  • Worsley K.J., Cao J., Paus T., Petrides M. and Evans A. (1998). Applications of random field theory to functional connectivity. Human Brain Mapping 6: 364–367

    Article  Google Scholar 

  • Worsley K.J., Marrett S., Neelin P., Vandal A.C., Friston K.J. and Evans A.C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4: 58–73

    Article  Google Scholar 

  • Worsley K.J., Taylor J.E., Tomaiuolo F. and Lerch J. (2004). Unified univariate and multivariate random field theory. Neuroimage 23: S189–S195

    Article  Google Scholar 

  • Yeh J. (1974). Inversion of conditional expectations. Pacific Journal of Mathematics 52(2): 631–640

    MATH  MathSciNet  Google Scholar 

  • Zabell S. (1979). Continous versions of regular conditional distributions. Annals of Probability 7(1): 159–165

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Carbonell.

Additional information

F. Carbonell’s work was supported by a postdoctoral fellowship from the ISM-CRM, Montreal, Quebec, Canada.

About this article

Cite this article

Carbonell, F., Worsley, K.J. & Galan, L. The geometry of the Wilks’s Λ random field. Ann Inst Stat Math 63, 1–27 (2011). https://doi.org/10.1007/s10463-008-0204-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-008-0204-2

Keywords

Navigation