Skip to main content
Log in

Robots, insects and swarm intelligence

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The aim of this paper is to consider the relationships between robots and insects. To this end, an overview is provided of the two main areas in which insects have been implicated in robotics research. First, robots have been used to provide working models of mechanisms underlying insect behaviour. Second, there are developments in robotics that have been inspired by our understanding of insect behaviour; in particular the approach of swarm robotics. In the final section of the paper, the possibility of achieving “strong swarm intelligence” is discussed. Two possible interpretations of strong swarm intelligence are raised: (1) the emergence of a group mind from a natural, or robot swarm, and (2) that behaviours could emerge from a swarm of artificial robots in the same way as they emerge from a biological swarm. Both interpretations are dismissed as being unachievable in principle. It is concluded that bio-robotic modelling and biological inspiration have made important contributions to both insect and robot research, but insects and robots remain separated by the divide between the living and the purely mechanical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ampatzis C, Tuci W, Trianni V, Dorigo M (2007) Evolution of signalling in a group of robots controlled by dynamic neural networks. In: Sahin E, Spears WM, Winfield AFT (eds) Swarm robotics, LNCS 4433, Springer, pp 173–188

  • Beckers R, Holland OE, Deneubourg JL (1994) From local actions to global tasks: stigmergy and collective robotics. In: Proceedings of A-Life IV, MIT Press

  • Boden M (2000). Autopoiesis and life. Cogn Sci Q 1: 117–145

    Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press

  • Bradshaw EL and Bateson P (2000). Welfare implications of culling red deer (Cervus elaphus). Anim Welf 9: 3–24

    Google Scholar 

  • Damasio A (1994) Descartes’ error: emotion, reason and the human brain. Penguin Books

  • Damasio A (2000). The feeling of what happens: body, emotion and the making of consciousness. Vintage, London

    Google Scholar 

  • Dautenhahn K, Ogden B, Quick T (2002) From embodied to socially embedded agents—implications for interaction-aware robots. Cogn Syst Res 3(3):397–428. Special issue on Situated and Embodied Cognition, guest-editor: Tom Ziemke, Elsevier

    Google Scholar 

  • Deneubourg J-L, Goss S, Franks N, Sendova-Franks A, Detrain C and Chretien L (1991). The dynamics of collective sorting: robot-like ants and ant-like robots. In: Meyer, JA and Wilson, SW (eds) From animals to animats. Proceedings of the first international conference on simulation of adaptive behaviour, pp 356–363. MIT Press (A Bradford Book), Cambridge

    Google Scholar 

  • Detrain C, Deneubourg JL, Pasteels JM (1999). (eds) Information processing in social insects. Birkhauser Verlag, Basel

    Google Scholar 

  • Franceschini N, Pichon JM and Blanes C (1992). From insect vision to robot vision. Philos Trans R Soc Lond 337: 283–294

    Article  Google Scholar 

  • Frisch K von (1954) The dancing bees: an account of the life and senses of the honey bee (tr Dora Illse). Methuen and Company, Ltd, London, xiv + 183 50 pp

  • Fong T, Nourbakhsh I and Dautenhahn K (2003). A survey of socially interactive robots. Rob Auton Syst 42: 143–166

    Article  MATH  Google Scholar 

  • Grassé PP (1959). La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes Natalensis et Cubitermes sp La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeur. Insectes Sociaux 6: 41–80

    Article  Google Scholar 

  • Grasso F, Consi, T, Mountain D, Aterna J (1996) Locating odor sources in turbulence with a lobster inspired robot. In: Proceedings of the fourth international conference on simulation of adaptive behaviour, From animals to animats, (SAB96), Cape Cod, MA, pp 104–112

  • Griffin DR (1992). Animal minds. The University of Chicago Press, Chicago

    Google Scholar 

  • Harnad S (1990). The symbol grounding problem. Physica D 42: 335–346

    Article  Google Scholar 

  • Hedwig B and Poulet JFP (2004). Complex auditory behaviour emerges from simple reactive steering. Nature 430: 781–785

    Article  Google Scholar 

  • Holland O and Melhuish C (1999). Stigmergy, self-organisation and sorting in collective robotics. Artif Life 5: 173–202

    Article  Google Scholar 

  • Ijspeert AJ, Martinoli A, Billard A and Gambardella LM (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: the stick pulling experiment. Auton Robots 11: 149–171

    Article  MATH  Google Scholar 

  • Jackson DE and Ratnieks FLW (2006). Communication in ants. Curr Biol 16(15): 570–574

    Article  Google Scholar 

  • Kelly K (1995) Out of control: the new biology of machines, social systems and the economic world. Perseus Books

  • Kube CR and Bonabeau E (2000). Cooperative transport by ants and robots. Rob Auton Syst 30: 85–101

    Article  Google Scholar 

  • Kube C, Zhang H (1996) The use of perceptual cues in multi-robot box-pushing. In: Proceedings of IEEE international conference on robotics and automation, pp 2085–2090

  • Labhart T(1988) Unpublished results

  • Labhart T (1998). Polarization-opponent interneurons in the insect visual system. Nature 331: 435–437

    Article  Google Scholar 

  • Lambrinos D, Maris M, Kobayashi H, Labhart T, Pfeifer R and Wehner R (1997). An autonomous agent navigating with a polarized light compass. Adap Behav 6(1): 131–161

    Article  Google Scholar 

  • Lambrinos D, Moller R, Labhart T, Pfeifer R and Wehner R (2000). A mobile robot employing insect strategies for navigation. Rob Auton Syst 30: 39–64

    Article  Google Scholar 

  • Loeb J (1912). The mechanistic conception of life: biological essays. The University of Chicago Press, Chicago

    Google Scholar 

  • Loeb J (1918). Forced movements, tropisms and animal conduct. Lippincott Company, Philadelphia

    Google Scholar 

  • Lund H, Webb B and Hallam J (1998). Physical and temporal scaling: considerations in a robot model of cricket calling song preference. Artif Life 4: 95–107

    Article  Google Scholar 

  • Marocco D and Nolfi S (2007). Emergence of communication in embodied agents for the ability to solve a collective navigation problem. Connect Sci 19(1): 53–74

    Article  Google Scholar 

  • Mallon EB, Pratt SC and Franks NR (2001). Individual and collective decision-making during nest site selection by the ant Leptothorax albipennis. Behav Ecol Sociobiol 50: 353–359

    Google Scholar 

  • Maturana HR and Varela FJ (1980). Autopoiesis and cognition: the realization of the living. Reidel, Boston

    Google Scholar 

  • Moser JC (1970) Pheromones of social insects. In: Wood D, Silverstein R, Nakajima M (eds) Control of insect behavior by natural products. Academic Press, pp 161–178

  • Nolfi S and Floreano D (2000). Evolutionary robotics: the biology, intelligence and technology of self-organizing machines. MIT Press/Bradford Books, Cambridge

    Google Scholar 

  • Noth W (2005). Semiotics for biologists. J Biosemiotics 1: 195–211

    Google Scholar 

  • Papaj DR and Lewis AC (1992). (eds) Insect learning: ecological and evolutionary perspectives. Chapman and Hall, New York

    Google Scholar 

  • Pratt SC, Mallon EB, Sumpter DB and Franks NR (2002). Quorum-dependent recruitment and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav Ecol Sociobiol 52(2): 117–127

    Article  Google Scholar 

  • Quick T, Dautenhahn K (1999) Making embodiment measurable, Workshop Contribution “Embodied Mind/Artificial Life” at 4. Fachtagung der Gesellschaft für Kognitionswissenschaft, 28. September - 1. Oktober 1999 in Bielefeld (KogWis99)

  • Ronacher B and Wehner R (1999). The individual at the core of information management. In: Detrain, C, Deneubourg, JL and Pasteels, JM (eds) Information processing in social insects, pp. Birkhauser Verlag, Basel

    Google Scholar 

  • Schildberger K (1984). Temporal selectivity of identified auditory interneurons in the cricket brain. J Comp Physiol A 155: 171–185

    Article  Google Scholar 

  • Searle JR (1980). Minds, brains and programs. Behav Brain Sci 3: 417–457

    Article  Google Scholar 

  • Searle JR (1997). The mystery of consciousness. Granta Books, London

    Google Scholar 

  • Sebeok TA (1965). Animal communication. Science 147: 1006–1013

    Article  Google Scholar 

  • Sharkey AJC (2007). Swarm robotics and minimalism. Connect Sci 19(3): 245–260

    Article  Google Scholar 

  • Sharkey AJC, Sharkey NE (2002) Cognitive modelling: psychology and connectionism. In: Arbib MA (ed) The handbook of brain theory and neural networks, 2nd ed. Bradford Books/MIT Press

  • Sharkey NE and Ziemke T (2000). Life, mind and robots—the ins and outs of embodied cognition. In: Wermter, S and Sun, R (eds) Hybrid neural systems, pp. Springer Verlag, Heidelberg

    Google Scholar 

  • Sharkey NE and Ziemke T (2001). Mechanistic vs phenomenal embodiment: can robot embodiment lead to strong AI. Cogn Syst Res 2(4): 251–262

    Article  Google Scholar 

  • Sherrington CS (1906). The integrative action of the nervous system. C.Scribner’s Sons, New York

    Google Scholar 

  • Srinivasan MV, Chahl JS and Zhang SW (1997). Robot navigation by visual dead-reckoning: inspiration from insects. Intern J Pattern Recognit Artif Intell 11(1): 35–47

    Article  Google Scholar 

  • Tan KC, Wang LF, Lee TH and Vadakkepat P (2004). Evolvable hardware in evolutionary robotics. Auton Robots 16: 5–21

    Article  Google Scholar 

  • Visscher PK and Camazine S (1999). The mystery of swarming honeybees: from individual behaviours to collective decisions. In: Detrain, C, Deneubourg, JL and Pasteels, JM (eds) Information processing in social insects, pp. Birkhauser Verlag, Basel

    Google Scholar 

  • Vitzthum H (1997) Der Zentralkomplex der Heuschrecke Schistocera gregaria: Ein mogliches Zentrum des Polarisationssehsystems. PhD thesis, University Regensburg

  • Webb B (1995). Using robots to model animals: a cricket test. Rob Auton Syst 16: 117–134

    Article  Google Scholar 

  • Webb B (2001). Can robots make good models of biological behaviour?   . Behav Brain Sci 24(6): 1033–1050

    Google Scholar 

  • Webb B and Scutt T (2000). A simple latency dependent spiking neuron model of cricket phonotaxis. Biol Cybern 82: 247–269

    Article  Google Scholar 

  • Wehner R and Wehner S (1986). Path integration in desert ants: approaching a long-standing puzzle in insect navigation. Monitore Zool Ital (N.S.) 20: 309–331

    Google Scholar 

  • Wenner AM and Wells PH (1990). Anatomy of a controversy: the question of a “Language” among bees. Columbia University Press, New York

    Google Scholar 

  • Wilson M, Melhuish C, Sendova-Franks AB and Scholes S (2004). Algorithms for building annular structures with minimalist robots inspired by brood sorting in ant colonies. Auton Rob 17: 115–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. C. Sharkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharkey, A.J.C. Robots, insects and swarm intelligence. Artif Intell Rev 26, 255–268 (2006). https://doi.org/10.1007/s10462-007-9057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-007-9057-y

Keywords

Navigation