Skip to main content

Advertisement

Log in

The Association Between Objectively-Measured Physical Activity and Cognitive Functioning in Middle-Aged and Older People Living with HIV

  • Original Paper
  • Published:
AIDS and Behavior Aims and scope Submit manuscript

Abstract

Middle-aged and older people living with HIV (PWH) are at higher risk for cognitive impairment and engage in lower levels of physical activity (PA) than seronegative counterparts. Research examining the association between objectively-measured PA and cognitive function in this population is scarce. This cross-sectional study examined the association between accelerometry-measured PA and cognitive functioning among 75 PWH (mean age 55.63). Light PA was the PA variable with the most consistent associations with cognition, with more minutes per week of light PA (performed in bouts of ≥ 10 min) being associated with better executive function, working memory/attention, and speed of processing performance, adjusted for age and current CD4 count. Findings suggest that although middle-aged and older PWH engage in more light than moderate-to-vigorous PA, light PA may be beneficial to cognition. Longitudinal studies are needed to understand PA dose–response associations with cognitive trajectories, cognitive domain specificity of PA effects, and underlying neural mechanisms of PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

De-identified data may be provided in justified circumstances to qualified individuals.

Code Availability

Data codes are available upon reasonable request from qualified individuals.

References

  1. Smit M, Brinkman K, Geerlings S, et al. Future challenges for clinical care of an ageing population infected with HIV: a modelling study. Lancet Infect Dis. 2015;15(7):810–8. https://doi.org/10.1016/S1473-3099(15)00056-0.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maciel RA, Kluck HM, Durand M, Sprinz E. Comorbidity is more common and occurs earlier in persons living with HIV than in HIV-uninfected matched controls, aged 50 years and older: a cross-sectional study. Int J Infect Dis. 2018;70:30–5. https://doi.org/10.1016/j.ijid.2018.02.009.

    Article  PubMed  Google Scholar 

  3. Winston A, Spudich S. Cognitive disorders in people living with HIV. Lancet HIV. 2020;7(7):e504–13. https://doi.org/10.1016/S2352-3018(20)30107-7.

    Article  PubMed  Google Scholar 

  4. Sheppard DP, Iudicello JE, Bondi MW, et al. Elevated rates of mild cognitive impairment in HIV disease. J Neurovirol. 2015;21(5):576–84. https://doi.org/10.1007/s13365-015-0366-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bloch M, John M, Smith D, Rasmussen TA, Wright E. Managing HIV-associated inflammation and ageing in the era of modern ART. HIV Med. 2020;21(Suppl 3):2–16. https://doi.org/10.1111/hiv.12952.

    Article  PubMed  Google Scholar 

  6. Swanta N, Aryal S, Nejtek V, Shenoy S, Ghorpade A, Borgmann K. Blood-based inflammation biomarkers of neurocognitive impairment in people living with HIV. J Neurovirol. 2020;26(3):358–70. https://doi.org/10.1007/s13365-020-00834-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rubin LH, Benning L, Keating SM, et al. Variability in C-reactive protein is associated with cognitive impairment in women living with and without HIV: a longitudinal study. J Neurovirol. 2018;24(1):41–51. https://doi.org/10.1007/s13365-017-0590-4.

    Article  CAS  PubMed  Google Scholar 

  8. Willig AL, Webel AR, Westfall AO, et al. Physical activity trends and metabolic health outcomes in people living with HIV in the US, 2008–2015. Prog Cardiovasc Dis. 2020;63(2):170–7. https://doi.org/10.1016/j.pcad.2020.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ozemek C, Erlandson KM, Jankowski CM. Physical activity and exercise to improve cardiovascular health for adults living with HIV. Prog Cardiovasc Dis. 2020;63(2):178–83. https://doi.org/10.1016/j.pcad.2020.01.005.

    Article  PubMed  Google Scholar 

  10. Paolillo EW, Sun-Suslow N, Pasipanodya EC, et al. Pre-frailty predicts cognitive decline at 2-year follow-up in persons living with HIV. J Neurovirol. 2020;26(2):168–80. https://doi.org/10.1007/s13365-019-00814-2.

    Article  PubMed  Google Scholar 

  11. Falutz J, Kirkland S, Guaraldi G. Geriatric syndromes in people living with HIV associated with ageing and increasing comorbidities: implications for neurocognitive complications of HIV infection. Curr Top Behav Neurosci. 2021;50:301–27. https://doi.org/10.1007/7854_2019_119.

    Article  CAS  PubMed  Google Scholar 

  12. Hawkins KL, Brown TT, Margolick JB, Erlandson KM. Geriatric syndromes: new frontiers in HIV and sarcopenia. AIDS. 2017;31(Suppl 2):S137–46. https://doi.org/10.1097/QAD.0000000000001444.

    Article  PubMed  Google Scholar 

  13. Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc. 2011;86(9):876–84. https://doi.org/10.4065/mcp.2011.0252.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Erickson KI, Hillman C, Stillman CM, et al. Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Med Sci Sports Exerc. 2019;51(6):1242–51. https://doi.org/10.1249/MSS.0000000000001936.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Santos-Lozano A, Pareja-Galeano H, Sanchis-Gomar F, et al. Physical activity and Alzheimer disease: a protective association. Mayo Clin Proc. 2016;91(8):999–1020. https://doi.org/10.1016/j.mayocp.2016.04.024.

    Article  PubMed  Google Scholar 

  16. Sofi F, Valecchi D, Bacci D, et al. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med. 2011;269(1):107–17. https://doi.org/10.1111/j.1365-2796.2010.02281.x.

    Article  CAS  PubMed  Google Scholar 

  17. Rehm KE, Konkle-Parker D. Physical activity levels and perceived benefits and barriers to physical activity in HIV-infected women living in the deep south of the United States. AIDS Care. 2016;28(9):1205–10. https://doi.org/10.1080/09540121.2016.1164802.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Martin K, Naclerio F, Karsten B, Vera JH. Physical activity and quality of life in people living with HIV. AIDS Care. 2019;31(5):589–98. https://doi.org/10.1080/09540121.2019.1576848.

    Article  PubMed  Google Scholar 

  19. Vancampfort D, Mugisha J, Richards J, De Hert M, Probst M, Stubbs B. Physical activity correlates in people living with HIV/AIDS: a systematic review of 45 studies. Disabil Rehabil. 2018;40(14):1618–29. https://doi.org/10.1080/09638288.2017.1306587.

    Article  PubMed  Google Scholar 

  20. Quigley A, O’Brien K, Parker R, MacKay-Lyons M. Exercise and cognitive function in people living with HIV: a scoping review. Disabil Rehabil. 2019;41(12):1384–95. https://doi.org/10.1080/09638288.2018.1432079.

    Article  PubMed  Google Scholar 

  21. Winston N, Swanson B, Capuano AW, Fogg LF, Barnes LL. Physical activity and cognitive health among people living with HIV: an integrative review. J Assoc Nurses AIDS Care. 2020;31(3):268–78. https://doi.org/10.1097/JNC.0000000000000141.

    Article  PubMed  Google Scholar 

  22. Winston N, Swanson B, Fogg LF, Capuano AW, Wilbur J, Barnes LL. Physical activity and cognitive function in African American older adults living with HIV. J Gerontol Nurs. 2021;47(12):27–34. https://doi.org/10.3928/00989134-20211109-06.

    Article  PubMed  Google Scholar 

  23. Dufour CA, Marquine MJ, Fazeli PL, et al. Physical exercise is associated with less neurocognitive impairment among HIV-infected adults. J Neurovirol. 2013;19(5):410–7. https://doi.org/10.1007/s13365-013-0184-8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dufour CA, Marquine MJ, Fazeli PL, et al. A longitudinal analysis of the impact of physical activity on neurocognitive functioning among HIV-infected adults. AIDS Behav. 2018;22(5):1562–72. https://doi.org/10.1007/s10461-016-1643-z.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fazeli PL, Marquine MJ, Dufour C, et al. Physical activity is associated with better neurocognitive and everyday functioning among older adults with HIV disease. AIDS Behav. 2015;19(8):1470–7. https://doi.org/10.1007/s10461-015-1024-z.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fazeli PL, Woods SP, Heaton RK, et al. An active lifestyle is associated with better neurocognitive functioning in adults living with HIV infection. J Neurovirol. 2014;20(3):233–42. https://doi.org/10.1007/s13365-014-0240-z.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fillipas S, Cicuttini F, Holland AE, Cherry CL. The international physical activity questionnaire overestimates moderate and vigorous physical activity in HIV-infected individuals compared with accelerometry. J Assoc Nurses AIDS Care. 2010;21(2):173–81. https://doi.org/10.1016/j.jana.2009.11.003.

    Article  PubMed  Google Scholar 

  28. Ogonowska-Slodownik A, Morgulec-Adamowicz N, Geigle PR, Kalbarczyk M, Kosmol A. Objective and self-reported assessment of physical activity of women over 60 years old. Ageing Int. 2021. https://doi.org/10.1007/s12126-021-09423-z.

    Article  Google Scholar 

  29. Quigley A, Brouillette MJ, Gahagan J, O’Brien KK, MacKay-Lyons M. Feasibility and impact of a yoga intervention on cognition, physical function, physical activity, and affective outcomes among people living with HIV: a randomized controlled pilot trial. J Int Assoc Provid AIDS Care. 2020. https://doi.org/10.1177/2325958220935698.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaur N, Aubertin-Leheudre M, Fellows LK, Brouillette MJ, Mayo N. Feasibility and potential benefits of a structured exercise program on cognitive performance in HIV. AIDS Care. 2021. https://doi.org/10.1080/09540121.2020.1867307.

    Article  PubMed  Google Scholar 

  31. Webel AR, Long D, Rodriguez B, et al. The PROSPER-HIV Study: a research protocol to examine relationships among physical activity, diet intake, and symptoms in adults living with HIV. J Assoc Nurses AIDS Care. 2020;31(3):346–52. https://doi.org/10.1097/JNC.0000000000000145.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kitahata MM, Rodriguez B, Haubrich R, et al. Cohort profile: the centers for AIDS research network of integrated clinical systems. Int J Epidemiol. 2008;37(5):948–55. https://doi.org/10.1093/ije/dym231.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moore RC, Fazeli PL, Jeste DV, et al. Successful cognitive aging and health-related quality of life in younger and older adults infected with HIV. AIDS Behav. 2014;18(6):1186–97. https://doi.org/10.1007/s10461-014-0743-x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. McNair DM, Lorr M, Droppleman LF. Manual for the profile of mood states. San Diego, CA: Educational and Industrial Testing Services; 1971.

  35. Humeniuk RE H-ES, Ali RL, Poznyak V, Monteiro M. The Alcohol, Smoking and Substance Involvement Screening Test (ASSIST): manual for use in primary care. 2010.

  36. Bush K, Kivlahan DR, McDonell MB, Fihn SD, Bradley KA. The AUDIT alcohol consumption questions (AUDIT-C): an effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Alcohol Use Disorders Identification Test. Arch Intern Med. 1998;158(16):1789–95. https://doi.org/10.1001/archinte.158.16.1789.

    Article  CAS  PubMed  Google Scholar 

  37. Strath SJ, Kaminsky LA, Ainsworth BE, et al. Guide to the assessment of physical activity: clinical and research applications: a scientific statement from the American Heart Association. Circulation. 2013;128(20):2259–79. https://doi.org/10.1161/01.cir.0000435708.67487.da.

    Article  PubMed  Google Scholar 

  38. Berntsen S, Hageberg R, Aandstad A, et al. Validity of physical activity monitors in adults participating in free-living activities. Br J Sports Med. 2010;44(9):657–64. https://doi.org/10.1136/bjsm.2008.048868.

    Article  CAS  PubMed  Google Scholar 

  39. Anastasopoulou P, Tubic M, Schmidt S, Neumann R, Woll A, Hartel S. Validation and comparison of two methods to assess human energy expenditure during free-living activities. PLoS ONE. 2014;9(2): e90606. https://doi.org/10.1371/journal.pone.0090606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hitz MM, Conway PG, Palcher JA, McCarty CA. Using PhenX toolkit measures and other tools to assess urban/rural differences in health behaviors: recruitment methods and outcomes. BMC Res Notes. 2014;7:847. https://doi.org/10.1186/1756-0500-7-847.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Haskell WL, Troiano RP, Hammond JA, et al. Physical activity and physical fitness: standardizing assessment with the PhenX Toolkit. Am J Prev Med. 2012;42(5):486–92. https://doi.org/10.1016/j.amepre.2011.11.017.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821–45. https://doi.org/10.1007/s40279-017-0716-0.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14(5):411–6. https://doi.org/10.1016/j.jsams.2011.04.003.

    Article  PubMed  Google Scholar 

  44. Chang YK, Erickson KI, Stamatakis E, Hung TM. How the 2018 US physical activity guidelines are a call to promote and better understand acute physical activity for cognitive function gains. Sports Med. 2019;49(11):1625–7. https://doi.org/10.1007/s40279-019-01190-x.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stamatakis E, Straker L, Hamer M, Gebel K. The 2018 physical activity guidelines for Americans: what’s new? Implications for clinicians and the public. J Orthop Sports Phys Ther. 2019;49(7):487–90. https://doi.org/10.2519/jospt.2019.0609.

    Article  PubMed  Google Scholar 

  46. Piercy KL, Troiano RP. Physical activity guidelines for Americans from the US Department of Health and Human Services. Circ Cardiovasc Qual Outcomes. 2018;11(11): e005263. https://doi.org/10.1161/CIRCOUTCOMES.118.005263.

    Article  PubMed  Google Scholar 

  47. Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–8. https://doi.org/10.1001/jama.2018.14854.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moore DJ, Roediger MJ, Eberly LE, et al. Identification of an abbreviated test battery for detection of HIV-associated neurocognitive impairment in an early-managed HIV-infected cohort. PLoS ONE. 2012;7(11): e47310. https://doi.org/10.1371/journal.pone.0047310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carey CL, Woods SP, Gonzalez R, et al. Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol. 2004;26(3):307–19. https://doi.org/10.1080/13803390490510031.

    Article  PubMed  Google Scholar 

  50. Woods SP, Rippeth JD, Frol AB, et al. Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. J Clin Exp Neuropsychol. 2004;26(6):759–78. https://doi.org/10.1080/13803390490509565.

    Article  PubMed  Google Scholar 

  51. Heaton RK, Marcotte TD, Mindt MR, et al. The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc. 2004;10(3):317–31. https://doi.org/10.1017/S1355617704102130.

    Article  PubMed  Google Scholar 

  52. Fazeli PL, Woods SP, Vance DE. Successful functional aging in middle-aged and older adults with HIV. AIDS Behav. 2020;24(6):1592–8. https://doi.org/10.1007/s10461-019-02635-0.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94. https://doi.org/10.1111/j.1365-2796.2004.01388.x.

    Article  CAS  PubMed  Google Scholar 

  54. Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275(3):214–28. https://doi.org/10.1111/joim.12190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bondi MW, Edmonds EC, Jak AJ, et al. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimers Dis. 2014;42(1):275–89. https://doi.org/10.3233/JAD-140276.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fitzgerald JD, Johnson L, Hire DG, et al. Association of objectively measured physical activity with cardiovascular risk in mobility-limited older adults. J Am Heart Assoc. 2015. https://doi.org/10.1161/JAHA.114.001288.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhu W, Wadley VG, Howard VJ, Hutto B, Blair SN, Hooker SP. Objectively measured physical activity and cognitive function in older adults. Med Sci Sports Exerc. 2017;49(1):47–53. https://doi.org/10.1249/MSS.0000000000001079.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gomes-Osman J, Cabral DF, Morris TP, et al. Exercise for cognitive brain health in aging: a systematic review for an evaluation of dose. Neurol Clin Pract. 2018;8(3):257–65. https://doi.org/10.1212/CPJ.0000000000000460.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhou XL, Wang LN, Wang J, Zhou L, Shen XH. Effects of exercise interventions for specific cognitive domains in old adults with mild cognitive impairment: a meta-analysis and subgroup analysis of randomized controlled trials. Medicine (Baltimore). 2020;99(31): e20105. https://doi.org/10.1097/MD.0000000000020105.

    Article  PubMed  Google Scholar 

  60. Spartano NL, Davis-Plourde KL, Himali JJ, et al. Association of accelerometer-measured light-intensity physical activity with brain volume: the Framingham Heart Study. JAMA Netw Open. 2019;2(4): e192745. https://doi.org/10.1001/jamanetworkopen.2019.2745.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Erlenbach E, McAuley E, Gothe NP. The association between light physical activity and cognition among adults: a scoping review. J Gerontol A. 2021;76(4):716–24. https://doi.org/10.1093/gerona/glab013.

    Article  Google Scholar 

  62. Umegaki H, Makino T, Uemura K, Shimada H, Cheng XW, Kuzuya M. Objectively measured physical activity and cognitive function in urban-dwelling older adults. Geriatr Gerontol Int. 2018;18(6):922–8. https://doi.org/10.1111/ggi.13284.

    Article  PubMed  Google Scholar 

  63. Gothe NP. Examining the effects of light versus moderate to vigorous physical activity on cognitive function in African American adults. Aging Ment Health. 2021;25(9):1659–65. https://doi.org/10.1080/13607863.2020.1768216.

    Article  PubMed  Google Scholar 

  64. Wheeler MJ, Green DJ, Ellis KA, et al. Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: a three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition. Br J Sports Med. 2020;54(13):776–81. https://doi.org/10.1136/bjsports-2018-100168.

    Article  PubMed  Google Scholar 

  65. Briggs BC, Ryan AS, Sorkin JD, Oursler KK. Feasibility and effects of high-intensity interval training in older adults living with HIV. J Sports Sci. 2021;39(3):304–11. https://doi.org/10.1080/02640414.2020.1818949.

    Article  PubMed  Google Scholar 

  66. Cassidy S, Thoma C, Houghton D, Trenell MI. High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia. 2017;60(1):7–23. https://doi.org/10.1007/s00125-016-4106-1.

    Article  PubMed  Google Scholar 

  67. Tjonna AE, Stolen TO, Bye A, et al. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin Sci (Lond). 2009;116(4):317–26. https://doi.org/10.1042/CS20080249.

    Article  PubMed  Google Scholar 

  68. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45(5):679–92. https://doi.org/10.1007/s40279-015-0321-z.

    Article  PubMed  Google Scholar 

  69. Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–34. https://doi.org/10.1136/bjsports-2013-092576.

    Article  PubMed  Google Scholar 

  70. Mekari S, Neyedli HF, Fraser S, et al. High-intensity interval training improves cognitive flexibility in older adults. Brain Sci. 2020. https://doi.org/10.3390/brainsci10110796.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kovacevic A, Fenesi B, Paolucci E, Heisz JJ. The effects of aerobic exercise intensity on memory in older adults. Appl Physiol Nutr Metab. 2020;45(6):591–600. https://doi.org/10.1139/apnm-2019-0495.

    Article  PubMed  Google Scholar 

  72. Coetsee C, Terblanche E. The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. Eur Rev Aging Phys Act. 2017;14:13. https://doi.org/10.1186/s11556-017-0183-5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Northey JM, Pumpa KL, Quinlan C, et al. Cognition in breast cancer survivors: a pilot study of interval and continuous exercise. J Sci Med Sport. 2019;22(5):580–5. https://doi.org/10.1016/j.jsams.2018.11.026.

    Article  PubMed  Google Scholar 

  74. Olney N, Wertz T, LaPorta Z, Mora A, Serbas J, Astorino TA. Comparison of acute physiological and psychological responses between moderate-intensity continuous exercise and three regimes of high-intensity interval training. J Strength Cond Res. 2018;32(8):2130–8. https://doi.org/10.1519/JSC.0000000000002154.

    Article  PubMed  Google Scholar 

  75. Hwang CL, Lim J, Yoo JK, et al. Effect of all-extremity high-intensity interval training vs. moderate-intensity continuous training on aerobic fitness in middle-aged and older adults with type 2 diabetes: a randomized controlled trial. Exp Gerontol. 2019;116:46–53. https://doi.org/10.1016/j.exger.2018.12.013.

    Article  PubMed  Google Scholar 

  76. Roy M, Williams SM, Brown RC, et al. High-intensity interval training in the real world: outcomes from a 12-month intervention in overweight adults. Med Sci Sports Exerc. 2018;50(9):1818–26. https://doi.org/10.1249/MSS.0000000000001642.

    Article  PubMed  Google Scholar 

  77. Mee-Inta O, Zhao ZW, Kuo YM. Physical exercise inhibits inflammation and microglial activation. Cells. 2019. https://doi.org/10.3390/cells8070691.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cabral DF, Rice J, Morris TP, Rundek T, Pascual-Leone A, Gomes-Osman J. Exercise for brain health: an investigation into the underlying mechanisms guided by dose. Neurotherapeutics. 2019;16(3):580–99. https://doi.org/10.1007/s13311-019-00749-w.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64. https://doi.org/10.1016/j.jpsychires.2014.10.003.

    Article  PubMed  Google Scholar 

  80. Huang T, Larsen KT, Ried-Larsen M, Moller NC, Andersen LB. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: a review. Scand J Med Sci Sports. 2014;24(1):1–10. https://doi.org/10.1111/sms.12069.

    Article  PubMed  Google Scholar 

  81. Fazeli PL, Woods SP, Lambert CC, Li W, Hopkins CN, Vance DE. Differential associations between BDNF and memory across older Black and White adults with HIV disease. J Acquir Immune Defic Syndr. 2022;89(2):129–35. https://doi.org/10.1097/QAI.0000000000002831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Avdoshina V, Garzino-Demo A, Bachis A, et al. HIV-1 decreases the levels of neurotrophins in human lymphocytes. AIDS. 2011;25(8):1126–8. https://doi.org/10.1097/QAD.0b013e32834671b3.

    Article  PubMed  Google Scholar 

  83. Bachis A, Avdoshina V, Zecca L, Parsadanian M, Mocchetti I. Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J Neurosci. 2012;32(28):9477–84. https://doi.org/10.1523/JNEUROSCI.0865-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abassi M, Morawski BM, Nakigozi G, et al. Cerebrospinal fluid biomarkers and HIV-associated neurocognitive disorders in HIV-infected individuals in Rakai, Uganda. J Neurovirol. 2017;23(3):369–75. https://doi.org/10.1007/s13365-016-0505-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Institutes of Health (NIH) Grants R24-AI067039 [CFAR Network of Integrated Clinical Systems (CNICS)], R01-NR018391 (PROSPER-HIV) and 3R01-NR018391-02S2 (PROSPER-HIV ADRD Supplement).

Author information

Authors and Affiliations

Authors

Contributions

Per ICMJE guidelines, all authors whose names appear on the submission: (1) made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; (2) drafted the work or revised it critically for important intellectual content; (3) approved the version to be published; and (4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Pariya L. Fazeli.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Ethical Approval

This study was approved by the University of Alabama at Birmingham Institutional Review Board.

Consent to Participate

This study was conducted in accordance with the Declaration of Helsinki and all participants provided written or verbal informed consent.

Consent for Publication

All participants provided consent to publish de-identified aggregated data for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazeli, P.L., Willig, A.L., Oliveira, V. et al. The Association Between Objectively-Measured Physical Activity and Cognitive Functioning in Middle-Aged and Older People Living with HIV. AIDS Behav 27, 1199–1210 (2023). https://doi.org/10.1007/s10461-022-03857-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10461-022-03857-5

Keywords

Navigation