Skip to main content
Log in

Hybrid mission planning with coalition formation

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

The increase in robotic capabilities and the number of such systems being used has resulted in opportunities for robots to work alongside humans in an increasing number of domains. The current robot control paradigm of one or multiple humans controlling a single robot is not scalable to domains that require large numbers of robots and is infeasible in communications constrained environments. Robots must autonomously plan how to accomplish missions composed of many tasks in complex and dynamic domains; however, mission planning with a large number of robots for such complex missions and domains is intractable. Coalition formation can manage planning problem complexity by allocating the best possible team of robots for each task. A limitation is that simply allocating the best possible team does not guarantee an executable plan can be formulated. However, coupling coalition formation with planning creates novel, domain-independent tools resulting in the best possible teams executing the best possible plans for robots acting in complex domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://gist.github.com/aldukeman/879b32f602282f729770c5ddac25fbaa.

  2. http://ipc02.icaps-conference.org/CompoDomains/RoversSimpleTime.pddl.

  3. https://gist.github.com/aldukeman/1103214e83d47a01b4414699228f9d7d.

References

  1. Allouche, M. K., & Boukhtouta, A. (2010). Multi-agent coordination by temporal plan fusion: Application to combat search and rescue. Information Fusion, 11(3), 220–232.

    Article  Google Scholar 

  2. Barrientos, A., Colorado, J., Cerro, Jd, Martinez, A., Rossi, C., Sanz, D., et al. (2011). Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics, 28(5), 667–689.

    Article  Google Scholar 

  3. Bibaï, J., Savéant, P., Schoenauer, M., & Vidal, V. (2010). On the benefit of sub-optimality within the divide-and-evolve scheme. In P. Cowling & P. Merz (Eds.), Evolutionary computation in combinatorial optimization (Vol. 6022, pp. 23–34)., Lecture notes in computer science Berlin: Springer.

    Chapter  Google Scholar 

  4. Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning for loosely coupled multi-agent systems. In Proceedings of the 18th international conference on autonomous planning and scheduling (pp. 28–35).

  5. Bryce, D., Gao, S., Musliner, D., & Goldman, R. (2015). SMT-based nonlinear PDDL+ planning. In Proceedings of the 29th conference on artificial intelligence (pp. 3247–3253).

  6. Chaimowicz, L., Cowley, A., Sabella, V., & Taylor, C. (2003). ROCI: A distributed framework for multi-robot perception and control. In Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 266–271).

  7. Chen, Y., Wah, B. W., & Hsu, C. W. (2006). Temporal planning using subgoal partitioning and resolution in SGPlan. Journal of Artificial Intelligence Research, 26(1), 323–369.

    MATH  Google Scholar 

  8. Coles, A., Coles, A., Fox, M., & Long, D. (2012). COLIN: Planning with continuous linear numeric change. Journal of Artificial Intelligence Research, 44(1), 1–96.

    MATH  Google Scholar 

  9. Cox, J. S., & Durfee, E. H. (2005). An efficient algorithm for multiagent plan coordination. In Proceedings of the 4th international joint conference on autonomous agents and multiagent systems (pp. 828–835).

  10. Dias, M., Ghanem, B., & Stentz, A. (2005). Improving cost estimation in market-based coordination of a distributed sensing task. In Proceedings of the 2005 IEEE/RSJ international conference on intelligent robots and systems (pp. 3972–3977).

  11. Dimopoulos, Y., Hashmi, M. A., & Moraitis, P. (2012). SATPLAN: Multi-agent planning as satisfiability. Knowledge-Based Systems, 29, 54–62.

    Article  Google Scholar 

  12. Do, M., & Kambhampati, S. (2001). Sapa: A domain-independent heuristic metric temporal planner. In Proceedings of the 6th European conference on planning (pp. 57–68).

  13. Engesse,r T., Bolander, T., Mattmüller, R., & Nebel, B. (2015). Cooperative epistemic multi-agent planning with implicit coordination. In Proceedings of the 3rd workshop on distributed and multi-agent planning (pp. 68 – 76).

  14. Ephrati, E., & Rosenschein, J. S. (1993). Multi-agent planning as the process of merging distributed sub-plans. In Proceedings of the 12th international workshop on distributed artificial intelligence (pp. 115–129).

  15. Ephrati, E., & Rosenschein, J. S. (1994). Divide and conquer in multi-agent planning. In Proceedings of the 12th national conference on artificial intelligence (Vol. 1, pp. 375–380).

  16. Erol, K., Nau, D. S., & Subrahmanian, V. S. (1992). On the complexity of domain-independent planning. In Proceedings of the 10th national conference on artificial intelligence (pp. 381–386).

  17. Eyerich, P., Keller, T., Aldinger, J., & Dornhege, C. (2014). Preferring preferred operators in temporal fast downward. In International planning competition (pp. 121–126).

  18. Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2(34), 189–208.

    Article  MATH  Google Scholar 

  19. Fox, M., & Long, D. (2003). PDDL 2.1: An extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research, 20(1), 61–124.

    MATH  Google Scholar 

  20. Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939–954.

    Article  Google Scholar 

  21. Hoffmann, J. (2003). The metric-ff planning system: Translating ”ignoring delete lists” to numeric state variables. Journal of Artificial Intelligence Research, 20(1), 291–341.

    MATH  Google Scholar 

  22. Howey, R., Long, D., & Fox, M. (2004). VAL: Automatic plan validation, continuous effects and mixed initiative planning using PDDL. In IEEE international conference on tools with artificial intelligence (pp. 294–301).

  23. Hsu, C. W., Wah, B. W., Huang, R., & Chen, Y. (2007). Constraint partitioning for solving planning problems with trajectory constraints and goal preferences. In Proceedings of the 20th international joint conference on artifical intelligence (pp. 1924–1929).

  24. Kim, M. H., Baik, H., & Lee, S. (2014). Response threshold model based uav search planning and task allocation. Journal of Intelligent and Robotic Systems, 75(3–4), 625–640.

    Article  Google Scholar 

  25. Koes, M., Nourbakhsh, I., & Sycara, K. (2005). Heterogeneous multirobot coordination with spatial and temporal constraints. In Proceedings of the 20th national conference on artificial intelligence (Vol. 3, pp. 1292–1297).

  26. Laborie, P., & Ghallab, M. (1995). IxTeT: An integrated approach for plan generation and scheduling. In Proceedings of the 1995 INRIA/IEEE symposium on emerging technologies and factory automation (Vol. 1, pp. 485–495).

  27. Liemhetcharat, S., & Veloso, M. (2014). Weighted synergy graphs for effective team formation with heterogeneous ad hoc agents. Artificial Intelligence, 208, 41–65.

    Article  MathSciNet  MATH  Google Scholar 

  28. Long, D., & Fox, M. (2003). The 3rd international planning competition: Results and analysis. Journal of Artificial Intelligence Research, 20(1), 1–59.

    MATH  Google Scholar 

  29. Moon, S., Oh, E., & Shim, D. (2013). An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments. Journal of Intelligent and Robotic Systems, 70, 303–313.

    Article  Google Scholar 

  30. Muise, C., Belle, V., Felli, P., McIlraith, S., Miller, T., Pearce, A. R., & Sonenberg, L. (2015). Planning over multi-agent epistemic states: A classical planning approach. In Proceedings of the 29th AAAI conference on artificial intelligence (pp. 3327–3334).

  31. Penberthy, J. S., & Weld, D. S. (1994). Temporal planning with continuous change. In Proceedings of the 1994 AAAI conference on artificial intelligence (pp. 1010–1015).

  32. Ponda, S., Johnson, L., & How, J. (2012). Distributed chance-constrained task allocation for autonomous multi-agent teams. In American control conference (pp. 4528–4533).

  33. Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research, 34, 521–567.

    MathSciNet  MATH  Google Scholar 

  34. Ramchurn, S. D., Polukarov, M., Farinelli, A., Truong, C., & Jennings, N. R.(2010). Coalition formation with spatial and temporal constraints. In Proceedings of the 9th international conference on autonomous agents and multiagent systems (Vol. 3, pp. 1181–1188).

  35. Rankooh, M. F., & Ghassem-Sani, G. (2015). ITSAT: An efficient sat-based temporal planner. Journal of Artificial Intelligence Research, 53, 541–632.

    MathSciNet  MATH  Google Scholar 

  36. Ren, Z., Feng, Z., & Wang, X. (2008). An efficient ant colony optimization approach to agent coalition formation problem. In Proceedings of the 7th world congress on intelligent control and automation (pp. 7879–7882).

  37. Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition structure generation with worst case guarantees. Artificial Intelligence, 111(1–2), 209–238.

    Article  MathSciNet  MATH  Google Scholar 

  38. Sen, S. D. (2015). An intelligent and unified framework for multiple robot and human coalition formation. Ph.D. thesis, Vanderbilt University.

  39. Sen, S. D., & Adams, J. A. (2014). An influence diagram based multi-criteria decision making framework for multirobot coalition formation. Autonomous Agents and Multi-Agent Systems, 29, 1061–1090.

    Article  Google Scholar 

  40. Service, T. C., & Adams, J. A. (2011). Coalition formation for task allocation: Theory and algorithms. Journal of Autonomous Agents and Multi-Agent Systems, 22(2), 225–248.

    Article  Google Scholar 

  41. Service, T. C., Sen, S. D., & Adams, J. A. (2014). A simultaneous descending auction for task allocation. In Proceedings of the 2014 IEEE international conference on systems, man and cybernetics, IEEE (pp. 379–384).

  42. Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial Intelligence, 101, 165–200.

    Article  MathSciNet  MATH  Google Scholar 

  43. Shiroma, P. M., & Campos, M. F. M. (2009). Comutar: A framework for multi-robot coordination and task allocation. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 4817–4824).

  44. Sujit, P., Manathara, J., Ghose, D., & de Sousa, J. (2014). Decentralized multi-uav coalition formation with limited communication ranges. In K. P. Valavanis & G. J. Vachtsevanos (Eds.), Handbook of unmanned aerial vehicles (pp. 2021–2048). Dordrecht: Springer.

    Google Scholar 

  45. Tang, F., & Parker, L. E. (2005). ASyMTRe: Automated synthesis of multi-robot task solutions through software reconfiguration. In Proceedings of IEEE international conference on robotics and automation (pp. 1513–1520).

  46. Torreño, A., Onaindía, E., & Sapena, O. (2012). An approach to multi-agent planning with incomplete information. European Conference on Artificial Intelligence, 242, 762–767.

    Google Scholar 

  47. Turpin, M., Michael, N., & Kumar, V. (2013). Trajectory planning and assignment in multirobot systems. In E. Frazzoli, T. Lozano-Perez, N. Roy, & D. Rus (Eds.), Algorithmic foundations of robotics X, Springer tracts in advanced robotics (Vol. 86, pp. 175–190). Berlin: Springer.

    Chapter  Google Scholar 

  48. Turpin, M., Michael, N., & Kumar, V. (2014). CAPT: Concurrent assignment and planning of trajectories for multiple robots. The International Journal of Robotics Research, 33(1), 98–112.

    Article  Google Scholar 

  49. Vidal, V. (2004). The yahsp planning system: Forward heuristic search with lookahead plans analysis. In 4th international planning competition, Citeseer (pp. 56–58).

  50. Vig, L., & Adams, J. A. (2006a). Market-based multi-robot coalition formation. In Proceedings of the 8th international symposium on distributed autonomous robotic systems (pp. 227–236).

  51. Vig, L., & Adams, J. A. (2006b). Multi-robot coalition formation. IEEE Transactions on Robotics, 22(4), 637–649.

    Article  MATH  Google Scholar 

  52. de Weerdt, M., Bos, A., Tonino, H., & Witteveen, C. (2003). A resource logic for multi-agent plan merging. Annals of Mathematics and Artificial Intelligence, 37(1–2), 93–130.

    Article  MathSciNet  MATH  Google Scholar 

  53. Wicke, D., Freelan, D., & Luke, S. (2015). Bounty hunters and multiagent task allocation. In Proceedings of the 2015 international conference on autonomous agents and multiagent systems (pp. 387–394).

  54. Zhu, D., Huang, H., & Yang, S. (2013). Dynamic task assignment and path planning of multi-auv system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Transactions on Cybernetics, 43(2), 504–514.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Dukeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dukeman, A., Adams, J.A. Hybrid mission planning with coalition formation. Auton Agent Multi-Agent Syst 31, 1424–1466 (2017). https://doi.org/10.1007/s10458-017-9367-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-017-9367-7

Keywords

Navigation