Skip to main content

Advertisement

Log in

Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Forests and agroforestry systems in the tropics play a decisive role in global carbon fixation strategies. The amount and type of coverage, along with the specific land use and land use change in a given area, determines whether carbon is stored or released into the atmosphere. The aim of this study was to evaluate the traditional silvopastoral systems (TSPS) through quantitative analysis of biomass and soil carbon storage whilst simultaneously qualitatively determining the ecological structure in terms of tree richness and diversity. The study was carried out in Matiguás, a sub-humid tropical region of Nicaragua, on five land use types: shrubland; intervened secondary forest; pasture with high tree density; pasture with low tree density and degraded pasture. Biomass carbon was estimated by allometric equations and soil organic carbon was evaluated at four depths (0–10, 10–20, 20–40 and 40–100 cm). Of the land uses studied, shrubland had the highest diversity. The biomass carbon ranged from 1.9 to 13.2 t C ha−1 for degraded pasture and intervened secondary forest, respectively. The highest soil organic carbon (SOC) storage at 1 m depth was for intervened secondary forest (163 t C ha−1), whereas degraded pastures had the lowest value (76 t C ha−1). Since SOC was the largest pool of total carbon in all cases, it should be evaluated down to a depth of at least 1 m. Increasing tree coverage in degraded and low-tree density pastures can contribute not only to enhance carbon sequestration but also to restore degraded lands in livestock landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amézquita MC, Ibrahim M, Llanderal T, Buurman P, Amézquita E (2004) Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. J Sustain For 21(1):31–49

    Article  Google Scholar 

  • Andrade HJ, Ibrahim M (2003) ¿Cómo monitorear el secuestro de carbono en los sistemas silvopastoriles? Agrofor Am 10(39–40):109–116

    Google Scholar 

  • Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308(1–2):11–22

    Article  CAS  Google Scholar 

  • Bennetzen EH, Smith P, Porter JR (2016) Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob Change Biol 22(2):763–781

    Article  Google Scholar 

  • Betancourt K, Ibrahim M, Harvey C, Vargas B (2003) Efecto de la cobertura arbórea sobre el comportamiento animal en fincas ganaderas de doble propósito en Matiguás, Matagalpa, Nicaragua. Agrofor Am 10(39–40):47–51

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer, vol 134. Food & Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • Brown S (2002) Measuring, monitoring, and verification of carbon benefits for forest–based projects. Philos Trans R Soc Lond A 360(1797):1669–1683

    Article  CAS  Google Scholar 

  • Buendia L, Miwa K, Ngara T, Tanabe K (2006) IPCC guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Hayama

    Google Scholar 

  • Carr D, Barbieri A, Pan W, Iranavi H (2006) Agricultural change and limits to deforestation in Central America. In: Agriculture and climate beyond 2015, pp 91–107

    Google Scholar 

  • Chacón-León M, Harvey CA (2013) Reservas de biomasa de árboles dispersos en potreros y mitigación al cambio climático. Agron Mesoam 24(1):17–26

    Article  Google Scholar 

  • Charturvedi RK, Raghubanshi AS, Singh JS (2011) Carbon density and accumulation in woody species of tropical dry forest in India. For Ecol Manage 262:1576–1588

    Article  Google Scholar 

  • Dagang AB, Nair PKR (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agrofor Syst 59(2):149–155

    Article  Google Scholar 

  • Delaney M, Brown S, Lugo AE, Torres-Lezama A, Quintero NB (1997) The distribution of organic carbon in major components of forests located in five life zones of Venezuela. J Trop Ecol 13(05):697–708

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2001) Global Forest Resources Assessment 2000. FAO Forestry Paper No. 140. Rome

  • Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12(1):42–58

    Article  Google Scholar 

  • Gibbs H, Ruesch, AS, Foley JA, Ramankutty N, Achard F, Holmgren P (2010) Pathways of agricultural expansion across the tropics: Implications for forest resources. Proc Natl Acad Sci USA (forthcoming)

  • Gordon JE, Hawthorne WD, Reyes-Garcıa A, Sandoval G, Barrance AJ (2004) Assessing landscapes: a case study of tree and shrub diversity in the seasonally dry tropical forests of Oaxaca, Mexico and southern Honduras. Biol Conserv 117(4):429–442

    Article  Google Scholar 

  • Graesser J, Aide TM, Grau HR, Ramankutty N (2015) Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ Res Lett 10(3):034017

    Article  Google Scholar 

  • Harvey CA, Villanueva C, Esquivel H, Gómez R, Ibrahim M, Lopez M, Martinez J, Muñoz D, Restrepo C, Saénz JC, Villacís J, Sinclair FL (2011) Conservation value of dispersed tree cover threatened by pasture management. For Ecol Manage 261(10):1664–1674

    Article  Google Scholar 

  • Ibrahim M, Chacón M, Cuartas C, Naranjo J, Ponce G, Vega P, Rojas J (2007 Almacenamiento de carbono en el suelo y la biomasa arbórea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforestería en las Américas, N° 45

  • IPCC (2000) In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Land use, land-use change and forestry. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10

    Article  Google Scholar 

  • Kaimowitz D (1996) Livestock and deforestation in Central America in the 1980s and 1990s: a policy perspective (No. 9). Cifor

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For Ecol Manage 352:9–20

    Article  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manage 246(2):208–221

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

    Article  Google Scholar 

  • Krebs CJ (1989) Ecological methodology (No. QH541. 15. S72. K74 1999.). Harper & Row, New York

    Google Scholar 

  • Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17(9):1158–1167

    Article  Google Scholar 

  • Levard L, Marín López Y, Navarro I (2001) Municipio de Matiguás: Potencialidades y limitantes del desarrollo agropecuario

  • MacDicken KG (1997) A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International Institute for Agricultural Development, Little Rock

    Google Scholar 

  • Magurran AE (1981) Biological diversity and woodland management: an investigation with special reference to Banagher, Co. Derry, N. Ireland (Doctoral dissertation, New University of Ulster)

  • Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • McGroddy ME, Lerner AM, Burbano DV, Schneider LC, Rudel TK (2015) Carbon stocks in silvopastoral systems: a study from four communities in southeastern Ecuador. Biotropica 47(4):407–415

    Article  Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois et Forêts des Tropiques 316(2):3–16

    Article  Google Scholar 

  • Mosquera O, Buurman P, Ramirez BL, Amezquita MC (2012) Carbon stocks and dynamics under improved tropical pasture and silvopastoral systems in Colombian Amazonia. Geoderma 189:81–86

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Wagner H (2014) vegan: Community Ecology Package. R package version 2.1-41/r2867

  • Pagiola S, Ramírez E, Gobbi J, de Haan C, Ibrahim M, Murgueitio E, Ruíz JP (2007) Paying for the Environmental Services of Silvopastoral Practices in Nicaragua. Ecol Econ 64(2):374–385. https://doi.org/10.1016/j.ecolecon.2007.04.014

    Article  Google Scholar 

  • Ruiz A, Ibrahim M, Beer J, Locatelli B, Andrade Castañeda HJ (2004) Fijación y almacenamiento de carbono en sistemas silvopastoriles y competitividad económica de fincas ganaderas en Matiguás, Nicaragua

  • Saha SK, Nair PR, Nair VD, Kumar BM (2009) Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76(1):53–65

    Article  Google Scholar 

  • Segura M, Kanninen M (2002) Inventario para estimar carbono en ecosistemas forestales tropicales. Inventarios Forestales para Bosques Latifoliados en América Central. Turrialba, CR, CATIE, pp 202–216

    Google Scholar 

  • Shelton M (2000) Tropical forage tree legumes: Key development issues http://www.fao.org/ag/AGP/AGPC/doc/Present/Shelton/. A short version of this paper has been included in Unasylva 51 (200), 25-32

  • Szott L, Ibrahim M, Beer J (2000) The hamburger connection hangover: cattle, pasture land degradation and alternative land use in Central America (No. 313). Bib. Orton IICA/CATIE

  • Takimoto A, Nair PR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agr Ecosyst Environ 125(1):159–166

    Article  CAS  Google Scholar 

  • West PC, Gibbs HK, Monfreda C, Wagner J, Barford CC, Carpenter SR, Foley JA (2010) Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc Natl Acad Sci USA 107(46):19645–19648

    Article  CAS  Google Scholar 

  • Yamamoto W, ApDewi I, Ibrahim M (2007) Effects of silvopastoral areas on milk production at dual-purpose cattle farms at the semi-humid old agricultural frontier in central Nicaragua. Agric Syst 94(2):368–375

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out in the context of the Regional Integrated Silvopastoral Approaches to Ecosystem Management Project (RISEMP) pilot, 2002–2008, in Colombia, Costa Rica and Nicaragua.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aura Cárdenas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, A., Moliner, A., Hontoria, C. et al. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agroforest Syst 93, 229–239 (2019). https://doi.org/10.1007/s10457-018-0234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-018-0234-6

Keywords

Navigation