Skip to main content

Advertisement

Log in

Effects of Acacia seyal and biochar on soil properties and sorghum yield in agroforestry systems in South Sudan

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

We studied the effects of Acacia seyal Del. intercropping and biochar soil amendment on soil physico-chemical properties and sorghum (Sorghum bicolor L.) yields in a two-year field experiment conducted on a silt loam site near Renk in South Sudan. A split-plot design with three replications was used. The main factor was tree-cropping system (dense acacia + sorghum, scattered acacia + sorghum, and sole sorghum) and biochar (0 and 10 Mg ha−1) was the subplot factor. The two acacia systems had lower soil pH, N and higher C/N ratios compared to the sole sorghum system. Biochar significantly increased soil C, exchangeable K+ contents, field capacity and available water content, but reduced soil exchangeable Ca2+ and effective CEC, and had no effect on soil pH. Acacia intercropping significantly reduced sorghum grain yields while biochar had no significant effect on sorghum yields. The land equivalent ratio (LER) for sorghum yield was 0.3 for both acacia systems in 2011, with or without biochar, but increased in 2012 to 0.6 for the scattered acacia system when combined with biochar. The reduction in sorghum yields by the A. seyal trees was probably due to a combination of competition for water and nutrients and shading. The lack of a yield response to biochar maybe due to insufficient time or too low a dosage. Further research is needed to test for the effects of tree intercropping and biochar and their interactions on soil properties and crop yields in drylands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah F, Chaieb M (2012) The influence of trees on nutrients, water, light availability and understorey vegetation in an arid environment. Appl Veg Sci 15:501–512. doi:10.1111/j.1654-109X.2012.01201.x

    Article  Google Scholar 

  • Abebe T (1994) Growth performance of some multipurpose trees and shrubs in the semi-arid areas of Southern Ethiopia. Agrofor Syst 26:237–248

    Article  Google Scholar 

  • Adams ME (1967) A Study of the Ecology of Acacia mellifera, Acacia and Balanites aegyptiaca in relation to land-clearing. J Appl Ecol 4:221–237

    Article  Google Scholar 

  • Belsky AJ (1994) Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass competition. Ecology 75:922–932

    Article  Google Scholar 

  • Belsky AJ, Amundson RG, Duxbury JM, Riha SJ, Ali AR, Mwonga SM (1989) The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. J Appl Ecol 26:1005–1024

    Article  Google Scholar 

  • Bernhard-Reversat F (1987) Litter incorporation to soil organic matter in natural and planted tree stands in Sengal. Pedobiologia 30:401–417

  • Bernhard-Reversat F, Loumeto JJ (2002) The litter system in African forest-tree plantations. In: Vikram Reddy M (ed) Management of tropical plantation-forests and their soil litter system: litter, biota and soil-nutrient dynamics. Science Publishers Inc, Enfield, NH, USA, pp 11–39

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Glob Chang Biol Bioenergy 5:202–214. doi:10.1111/gcbb.12037

    Article  CAS  Google Scholar 

  • Blackwell P, Riethmuller G, Collins M (2009) Biochar application to soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 207–226

    Google Scholar 

  • Blaser WJ, Sitters J, Hart SP, Edwards PJ, Olde Venterink H (2013) Facilitative or competitive effects of woody plants on understorey vegetation depend on N-fixation, canopy shape and rainfall. J Ecol 101:1598–1603. doi:10.1111/1365-2745.12142

    Article  Google Scholar 

  • Buresh RJ, Tian G (1998) Soil improvement by trees in sub-Saharan Africa. Agrofor Syst 38:51–76

    Article  Google Scholar 

  • Chan KY, Xu Z (2009) Nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology, 1st edn. Earthscan, London, pp 67–84

    Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD (2008) Stability of black carbon in soils across a climatic gradient. J Geophys Res 113:G02027. doi:10.1029/2007JG000642

    Google Scholar 

  • Cornelissen G, Martinsen V, Shitumbanuma V, Alling V, Breedveld G, Rutherford D, Sparrevik M, Hale S, Obia A, Mulder J (2013) Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 3:256–274. doi:10.3390/agronomy3020256

    Article  Google Scholar 

  • Danso SKA, Bowen GD, Sanginga N (1992) Biological nitrogen-fixation in trees in agroecosystems. Plant Soil 141:177–196

    Article  CAS  Google Scholar 

  • De Melo Carvalho MT, Madari BE, Bastiaans L, van Oort PAJ, Heinemann AB, da Silva MAS, de Holanda Nunes Maia A, de Meinke H (2013) Biochar improves fertility of a clay soil in the Brazilian Savannah: short term effects and impact on rice yield. J Agric Rural Dev Trop Subtrop 114:101–107

    Google Scholar 

  • Dohn J, Dembélé F, Karembé M, Moustakas A, Amévor KA, Hanan NP (2013) Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. J Ecol 101:202–209. doi:10.1111/1365-2745.12010

    Article  Google Scholar 

  • El-Tahir BA, El-Hag FM, Madibo GM, El-Wakeel AS (2004) Influence of Acacia Senegal, Acacia seyal and Acacia tortilis on some properties of sandy soil in North Kordofan State, Sudan. Univ Khartoum J Agric Sci 12(1):127–141

    Google Scholar 

  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653

    Article  CAS  PubMed  Google Scholar 

  • Fadl KM (2013) Influence of Acacia Senegal agroforestry system on growth and yield of sorghum, sesame, roselle and gum in north Kordofan State, Sudan. J For Res 24:173–177. doi:10.1007/s11676-012-0319

    Article  CAS  Google Scholar 

  • Fadl KM, El sheikh SE (2010) Effect of Acacia senegal on growth and yield of groundnut, sesame and roselle in an agroforestry system in North Kordofan state, Sudan. Agrofor Syst 78:243–252. doi:10.1007/s10457-009-9243-9

    Article  Google Scholar 

  • FAO and ICRISAT (1996) The World Sorghum economies; facts, trends and outlook. FAO, Rome and ICRISAT, Andhra Pradesh

  • FAO and WFP (2011) Crop and food security assessment mission to southern Sudan. Special Report, pp. 52. Accessed on 10 Jun 2012

  • Gaafar AM, Salih AA, Luukkanen O, El Fadl MA, Kaarakka V (2006) Improving the traditional Acacia senegal-crop system in Sudan: the effect of tree density on water use, gum production and crop yields. Agrofor Syst 66:1–11

    Article  Google Scholar 

  • Ganry F, Dommergues YR (1995) Arbres fixateurs d’azote: champ ouvert pour la recherche. Agric Dev 7:38–55

    Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Gnanglè CP, Gbemavo C, Aihou K, Kakai RG, Sokpon N (2013) Productivity of cotton and sorghum in an agroforestry system of Shea trees (Vitellaria paradoxa Gaertn) in northern Benin. Nat Sci 5:207–213

    Google Scholar 

  • Gwenzi W, Chaukura N, Mukome FND, Machado S, Nyamasoka B (2015) Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties. J Environ Manag 150:250–261. doi:10.1016/j.jenvman.2014.11.027

    Article  CAS  Google Scholar 

  • Hardie M, Clothier B, Bound S, Oliver G, Close D (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376:347–361. doi:10.1007/s11104-013-1980-x

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274:237–250. doi:10.1007/s11104-004-1305-1

    Article  CAS  Google Scholar 

  • IITA (2007) International Institute of Tropical Agriculture. Southern Sudan, Equatoria Region, Cassava Baseline Survey, Technical Report, pp. 67. www.iita.org. Accessed 16 April 2008

  • Jeffery S, Bezemer TM, Cornelissen G, Kuypert TW, Lehmann J, Mommer L, Sohi SP, Van De Voordet F, Wardle DA, Van Groenigen JW (2015) The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy 7:1–13. doi:10.1111/gcbb.12132

    Google Scholar 

  • Kessler JJ (1992) The influence of karité (Vitellaria paradoxa) and néré (Parkia biglobosa) trees on sorghum production in Burkina Faso. Agrofor Syst 17:97–118

    Article  Google Scholar 

  • Kimetu J, Lehmann J, Ngoze S, Mugendi D, Kinyangi J, Riha S, Verchot L, Recha J, Pell A (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009): Lehmann J, Joseph S (ed) Biochar for environmental management: science and technology, 1st edn. Earthscan, London, pp. 1–12

  • Lehmann J, Rondon M (2006) Biochar soil management on highly weathered soils in the humid tropics. In: Uphoff N (ed) Biological approaches to sustainable soil systems, 1st edn. CRC Press, Boca Raton, Florida, pp 517–530

  • Lentz RD, Ippolito JA (2012) Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J Environ Qual 41:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730. doi:10.2136/sssaj2005.0383

    Article  CAS  Google Scholar 

  • Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373:583–594. doi:10.1007/s11104-013-1806-x

    Article  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha S, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128. doi:10.1007/s11104-010-0327-0

    Article  CAS  Google Scholar 

  • Masutha TH, Muofhe ML, Dakora FD (1997) Evaluation of N2 fixation and agroforestry potential in selected tree legumes for sustainable use in South Africa. Soil Biol Biochem 29:993–998

    Article  CAS  Google Scholar 

  • Mohammed HM, Röhle H (2011) Studying the competition in natural stands of Acacia seyal Del. variety seyal. Forestry Ideas 17(1): 34-44

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht. ISBN 0-7923-2134-0

    Book  Google Scholar 

  • Nair PKR, Garrity D (2012) Agroforestry research and development: the way forward. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use (Advances in Agroforestry 9). Springer, Dordrecht, pp 515–531

    Chapter  Google Scholar 

  • Nelissen V, Ruysschaert G, Müller-Stöver D, Bodé S, Cook J, Ronsse F, Shackley S, Boeckx P, Hauggaard-Nielsen H (2014) Short-term effect of feedstock and pyrolysis temperature on biochar characteristics, soil and crop response in temperate soils. Agronomy 4:52–73. doi:10.3390/agronomy4010052

    Article  Google Scholar 

  • Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MAS (2010) Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154:281–288

    Article  CAS  Google Scholar 

  • Olembo KN, M’mboyi F, Kiplagat S, Sitieney JK, Oyugi FK (2010) Sorghum Breeding in Sub-Saharan Africa: The Success Stories. African Biotechnology Stakeholders Forum (ABSF), Nairobi

    Google Scholar 

  • Ong CK, Leakey RRBCK (1999) Why tree-crop interactions in agroforestry appear at odds with tree-grass interactions in tropical savannahs. Agrofor Syst 45:109–129

    Article  Google Scholar 

  • Ouyang L, Wang F, Tang J, Yu L, Zhang R (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr 13(4):991–1002

    Google Scholar 

  • Palm CA (1995) Contribution of agroforestry trees to nutrient requirements of intercropped plants. Agrofor Syst 30:105–124

    Article  Google Scholar 

  • Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112:159–166

    Article  Google Scholar 

  • Raddad EY, Luukkanen O (2007) The influence of different Acacia senegal agroforestry systems on soil water and crop yields in clay soils of the Blue Nile region, Sudan. Agric Water Manag 87:61–72

    Article  Google Scholar 

  • Raddad EY, Luukkanen O, Salih AA, Kaarakka V, Elfadl MA (2006) Productivity and nutrient cycling in young Acacia senegal farming systems on Vertisol in the Blue Nile region, Sudan. Agrofor Syst 68:193–207. doi:10.1007/s10457-006-9009-6

    Article  Google Scholar 

  • Rondon MA, Lehmann L, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708. doi:10.1007/s00374-006-0152-z

    Article  Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578. doi:10.2136/sssaj2005

    Article  CAS  Google Scholar 

  • Schenkel Y, Bertaux P, VanWijnbserghe S, Carre J (1998) An evaluation of the mound kiln carbonization technique. Biomass Bioenergy 14:505–516

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. doi:10.1016/S0065-2113(10)05002-9

    Article  CAS  Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33:81–96. doi:10.1007/s13593-012-0081-1

    Article  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Suresh G, Rao JV (1999) Intercropping sorghum with nitrogen fixing trees in semiarid India. Agrofor Syst 42:181–194

    Article  Google Scholar 

  • Tammeorg P, Simojoki A, Mäkelä P, Stoddard F, Alakukku L, Helenius J (2014a) Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 374:89–107 (Erratum Plant Soil 379: 389–390)

    Article  CAS  Google Scholar 

  • Tammeorg P, Parviainen T, Nuutinen V, Simojoki A, Vaara E, Helenius J (2014b) Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand. Agric Ecosyst Environ 191:150–157

    Article  CAS  Google Scholar 

  • Tammeorg P, Simojoki A, Mäkelä P, Stoddard F, Alakukku L, Helenius J (2014c) Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agric Ecosyst Environ 191:108–116

    Article  CAS  Google Scholar 

  • UNEP (2007) United Nations Environnent programme. Sudan Post-Conflict Environmental Assessment report. Nairobi, Kenya. www.unep.org/sudan/post-conflict/PDF/UNEP_Sudan.pdf

  • Van Zwieten L, Kimber S, Morris S, Chan YK, Downie A, Rust J, Joseph S, Cowie A (2010) Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2):235–246

    Article  Google Scholar 

  • Van Zwieten L, Rose T, Herridge D, Kimber S, Rust J, Cowie A, Morris S (2015) Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: dissection of causal mechanisms. Plant Soil. Open Access. doi: 10.1007/s11104-015-2427-3

  • Wilson TD, Brook RM, Tomlinson HF (1998) Interaction between Néré (Parkia biglobosa) and under-planted sorghum in parkland systems in Burkina Faso. Exp Agric 34(1):85–99. doi:10.1017/S0014479798001069

    Article  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrot FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(56):1–9. doi:10.1038/ncomms1053

    Article  PubMed Central  Google Scholar 

  • Young A (1989) Agroforestry for soil conservation. ICRAF, CAB International Publications, Nairobi, p 27

    Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from the Landscape Management Planning and Training for the Environment in Southern Sudan (LAMPTESS) project, and Department of Agricultural Sciences, Faculty of Agricultural and Forestry, University of Helsinki. We also are indebted to the staff of faculties of Agricultural and Forestry, University of Upper Nile, South Sudan for their help and facilitation in the field work. The technical assistance in the laboratory during the chemical analysis of the samples at the University of Helsinki, Finland by Prof. Markku Yli-Halla and laboratory technician Marjut Wallner are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biar Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Tammeorg, P., Luukkanen, O. et al. Effects of Acacia seyal and biochar on soil properties and sorghum yield in agroforestry systems in South Sudan. Agroforest Syst 91, 137–148 (2017). https://doi.org/10.1007/s10457-016-9914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-9914-2

Keywords

Navigation