Skip to main content

Advertisement

Log in

Butterfly distribution in fragmented landscapes containing agroforestry practices in Southeastern Brazil

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Agroforestry practices, such as Shaded Coffee and Homegardens, may provide habitat for forest butterflies and contribute to their conservation in fragmented agricultural landscapes. To determine the influence of agroforestry practices in an agricultural mosaic, the distribution of fruit-feeding butterflies was studied using a systematic approach that compared butterfly species richness in six land-use practices (Eucalyptus [Eucalyptus spp.], Shaded Coffee, Homegardens, Secondary Growth, Pastures, and monocultures of Cassava [Manihot esculenta] and Sugarcane [Saccharum officinarum]), and in natural habitat (secondary Forest Edge and Interior) in two study areas (agricultural landscapes). In each study area, Van Someren-Rydon butterfly traps were placed as a grid every 150 m, creating quadrants of 2.2 and 2.4 km2 that encompassed the different land-use practices. Land-use, plot area, number of traps and distance to the forest were set as covariates to compare species richness values. Butterfly species composition was compared using linear discriminant analysis (LDA). With the exception of Pastures, Cassava and Sugarcane, significant differences were not identified between the rest of the agricultural land-use practices and the forest habitats (edge and interior). The species composition in the agricultural practices was however, different to that found in forest habitats. Overall, Shaded Coffee practices that represent long-term mixed tree and crop stands have a better potential of conserving forest butterfly species compared to monoculture practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barlow J, Araujo IS, Overal WL, Gardner TA, Da Silva Mendes F, Lake IR, Peres CA (2009) Diversity and composition of fruit feeding butterflies in tropical Eucalyptus plantations. Biodivers Conserv 17:1089–1104

    Article  Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267

    Article  PubMed  Google Scholar 

  • Bobo KS, Waltert M, Sainge NM, Njokagbor J, Fermon H, Muhlenberg M (2006) From forest to farmland: species richness patterns of trees and understorey plants along a gradient of forest conversion in southwestern Cameroon. Biodivers Conserv 15:4097–4117

    Article  Google Scholar 

  • Bos MM, Steffan-Dewenter I, Tscharntke T (2007) Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agric Ecosyst Environ 120:201–205

    Article  Google Scholar 

  • Brown KS, Freitas AVL (2000) Atlantic forest butterflies: Indicators for landscape conservation. Biotropica 32:934–956

    Google Scholar 

  • Burns R, Burns R (2009) Discriminant analysis. Business research methods and statistics using SPSS. SAGE Publications, London

    Google Scholar 

  • Buschhorn P (2010) Species diversity and feeding preferences of butterflies along a rainfall gradient in Bolivia. Dissertation. The University of Göttingen. http://issuu.com/patrickbuschhorn/docs/memoire-patrickbuschhorn. Accessed 10 June 2013

  • Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. http://purl.oclc.org/estimates. Accessed 12 June 2013

  • Conradt L, Roper TJ, Thomas CD (2001) Dispersal behavior of individuals in metapopulations of two British butterflies. Oikos 95:416–424

    Article  Google Scholar 

  • Cullen L, Alger K, Rambaldi DM (2005) Land reform and biodiversity conservation in Brazil in the 1990s: conflict and the articulation of mutual interests. Conserv Biol 19:747–755

    Article  Google Scholar 

  • Cullen L, Schmink M, Padua CV, Morato MIR (2001) Agroforestry benefit zones: a tool for the conservation and management of Atlantic forest fragments, Sao Paulo, Brazil. Nat Areas J 21:346–356

    Google Scholar 

  • D’Abrera BL (1984) Butterflies of South America. Hill House, Victoria

    Google Scholar 

  • Dennis RL, Shreeve TG (1988) Hostpant-habitat structure and the evolution of butterfly mate-locating behavior. Zool J Linnean Soc 94:301–318

    Article  Google Scholar 

  • DeVries PJ, Walla TR (2001) Species diversity and community structure in neotropical fruit-feeding butterflies. Biol J Linnean Soc 74:1–15

    Article  Google Scholar 

  • DeVries PJ (1987) The butterflies of Costa Rica and their natural history. Princeton University Press, New Jersey, p 288

    Google Scholar 

  • Dolia J, Devy MS, Aravind NA, Kumar A (2008) Adult butterfly communities in coffee plantations around a protected area in the Western Ghats, India. Anim Conserv 11:26–34

    Article  Google Scholar 

  • Dunnett CW (1980) Pairwise multiple comparisons in the unequal variance case. Biomed 37:182

    Google Scholar 

  • Egeskog A, Berndes G, Freitas F, Gustafsson S, Sparovek G (2011) Integrating bioenergy and food production—a case study of combined ethanol and dairy production in Pontal Brazil. Energy Sustain Dev 15(1):8–16

    Article  CAS  Google Scholar 

  • Emery ED, Brown KS, Pinheiro CEG (2006) The butterflies (Lepidoptera, Papilionoidea) of the Distrito Federal, Brazil. Rev Brasileira De Entomol 50:85–92

    Google Scholar 

  • ESRI (2009) ARcGIS desktop: Release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Estrada A, Cammarano P, Coates-Estrada R (2000) Bird species richness in vegetation fences and in strips of residual rain forest vegetation at Los Tuxtlas, Mexico. Biodiv Conserv 9:1399–1416

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Meritt D Jr (1993) Bat species richness and abundance in tropical rain forest fragments and in agricultural habitats at Los Tuxtlas. Mexico Ecogr 16(4):309–318

    Article  Google Scholar 

  • Fleishman E, Murphy DD (2009) A realistic assessment of the indicator potential of butterflies and Other Charismatic Taxonomic Groups. Conserv Biol 23:1109–1116

    Article  PubMed  Google Scholar 

  • Freitas FLM, Sparovek G (2008) Sugarcane expansion near to agrarian reform settlements: a case study of Pontal, Brazil. http://www.docstoc.com/docs/3824542/sugarcane-expansion-near-to-agrarian-reform-settlements-a-case-study. Accessed 05 June 2012

  • Harvey CA, Villalobos JAG (2007) Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodiv Conserv 16:2257–2292

    Article  Google Scholar 

  • Harvey CA, Gonzalez J, Somarriba E (2006) Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodiv Conserv 15:555–585

    Article  Google Scholar 

  • Harvey DJ (1991) Higher classification of the Nymphalidae, Appendix B, p. 255–268. In: Nijhout HF (ed) The development and evolution of butterfly wing patterns. Smithsonian Institution Press, Washington, p 318

    Google Scholar 

  • Izenman AJ (2008) Modern multivariate statistical technique. Springer, New York, pp 237–280

    Book  Google Scholar 

  • Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. Evol Biol 6:4

    Article  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor sys 76(1):1–10

    Google Scholar 

  • Keppel G (1991) Design and analysis: a researcher’s handbook, 3rd edn. Prentice-Hall, Inc, Englewood Cliffs

    Google Scholar 

  • Klein AM, Steffan-Dewenter I, Buchori D, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv Biol 16:1003–1014

    Article  Google Scholar 

  • Kremen C (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol Appl 2:203–217

    Article  Google Scholar 

  • Krenn HW (2008) Feeding behaviours of neotropical butterflies (Lepidoptera, Papilionoidea). Denisia, zugleich Kataloge der oberösterreichischen Landesmuseen Neue Serie 88:295–304

    Google Scholar 

  • Kruess A, Tscharntke T (2002) Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv Biol 16:1570–1580

    Article  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: A 22-year investigation. Conserv Biol 16:605–618

    Article  Google Scholar 

  • Lima JF, Gomes HB, Cullen L Jr, Beltrame TP, Moscogliato AV, Campos NR (2007) Café con Floresta: Criando suficiência alimentar e biodiversidade ecológica. In: Fundacão Cargil. Manejo ambiental e restauracão de áreas degradadas, São Paulo, 01:77–107

  • Marden JH, Chai P (1991) Aerial predation and butterfly design: how palatability, mimicry and the need for evasive flight constrain mass allocation. Am Nat 138(1):15–36

    Article  Google Scholar 

  • Marin L, Leon-Cortes JL, Stefanescu C (2009) The effect of an agro-pasture landscape on diversity and migration patterns of frugivorous butterflies in Chiapas, Mexico. Biodiv Conserv 18:919–934

    Article  Google Scholar 

  • Marin MA, PeňaC Freitas AV, Wahleberg N, Uribe SI (2011) From the phylogeny of the Satyrinae butterflies to the systematics of Euptychiina (Lepidoptera:Nymphalidae): history, progress and prospects. Neotrop Entomol 40(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • McNeely JA, Schroth G (2006) Agroforestry and biodiversity conservation—traditional practices, present dynamics, and lessons for the future. Biodiv Conserv 15:549–554

    Article  Google Scholar 

  • Menegario C (2006) Quintais agroflorestais como ilhas de biodiversidade. Botucatu, São Paulo

    Google Scholar 

  • Mielke OHH, Casagrande MM (1997) Papilionoidea and Hesperioidea (Lepidoptera) from the Morro do Diabo State Park, Teodoro Sampaio, São Paulo, Brazil. Rev Brasileira De Zool 14:967–1001

    Article  Google Scholar 

  • Nair PKR (1991) State-of-the-art of agroforestry systems. Ecol Manag 45:5–29

    Article  Google Scholar 

  • PEMD (2006) Parque Estadual do Morro do Diabo: plano de manejo/[coordenador editorial Helder Henrique de Faria]. Editoria Viena, São Paulo

    Google Scholar 

  • Perfecto I, Rice RA, Greenberg R, VanderVoort ME (1996) Shade Coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (1996) Microclimate changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia 108:577–582

    Article  Google Scholar 

  • Perfecto I, Mas A, Dietsch T, Vandermeer J (2003) Conservation of biodiversity in coffee agroecosystems: A tri-taxa comparison in southern Mexico. Biodiv Conserv 12:1239–1252

    Article  Google Scholar 

  • Perfecto I, Vandermeer J, Mas A, Pinto LS (2005) Biodiversity, yield, and Shade Coffee certification. Ecol Econ 54:435–446

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2008) Spatial pattern and ecological process in the coffee agroforestry system. Ecology 89:915–920

    Article  PubMed  Google Scholar 

  • Pettirossi N (2009) Richness, abundane, and species composition of frugivorous butterflies (Lepidoptera, Nymphalidae) at Mata de Santa Genebra Forest Reserve, Campinas, Brazil. Boletim do Museu de Biol Mello Leitao 25:13–29

    Google Scholar 

  • Philpott SM, Arendt WJ, Armbrecht I, Bicier P, Diestch TV, Gordon C, Greenberg R, Perfecto I, Reynoso-Santos R, Soto-Pinto L, Tejeda-Cruz C, Williams-Linera G, Valenzuela J, Zolotoff M (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22(5):1093–1105

    Article  PubMed  Google Scholar 

  • Pozo A, Luis-Martinez A, Lorente-Bousquets JL, Salas-Suarez N, Maya-Martinez A, Vargas-Fernandez I, Warren AD (2008) Seasonality and phenology of the butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Mexico’s Calakmul Region. Florida Entomol 91:407–422

    Article  Google Scholar 

  • Ranta P, Blom T, Niemelä J, Joensuu E, Siitonen M (1998) The fragmented Atlantic Rain Forest of Brazil: size, shape and distribution of forest fragments. Biodiv and Conserv 7:385–403

    Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158(1):87–99

    Google Scholar 

  • SAS Institute Inc. (2011) SAS® 9.3. SAS Institute Inc, Cary

    Google Scholar 

  • Scales BR, Marsden SJ (2008) Biodiversity in small-scale tropical agroforest: a review of species richness and abundance shifts and the factors influencing them. Environ Conserv 35(2):160–172

    Google Scholar 

  • Schroth G, Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC

  • Schulze CH, Fiedler K (1998) Habitat preference and flight activity of Morphinae butterflies in a Bornean rainforest, with a note on sound production by adult Zeuxidia (Lepidoptera: Nymphalidae). Malayan Nat J 52:163–176

    Google Scholar 

  • Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabuddin, Veddeler D, Muhlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 14:1321–1333

    Article  Google Scholar 

  • Scott JA (1974) Mate-locating behavior in butterflies. Am Midland Nat 91:103–117

    Article  Google Scholar 

  • Sundufu A, Dumbuya R (2008) Habitat preferences of butterflies in the Bumbuna forest, Northern Sierra Leone. J Insect Sci 8:1–17

    Article  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–572

    Article  Google Scholar 

  • Tobar Lopez D, Ibrahim M, Casasola F (2007) Butterfly diversity in an agricultural landscape in the Central Pacific region of Costa Rica. Agrofor Am 4:58–65

    Google Scholar 

  • Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89:944–951

    Article  PubMed  Google Scholar 

  • Uehara-Prado M, Brown KS, Freitas AVL (2007) Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: comparison between a fragmented and a continuous landscape. Glob Ecol Biogeogr 16:43–54

    Article  Google Scholar 

  • Uehara-Prado M, Freitas AVL, Francini RB, Brown KS Jr (2004) Guia das borboletas frugívoras da Reserva Estadual do Morro Grande e região de Caucaia do Alto, Cotia (São Paulo). Biota Neotrop 4:1–25

    Article  Google Scholar 

  • Valladares-Padua C, Padua SM, Cullen L Jr (2002) Within and surrounding the Morro do Diabo State Park: biological value, conflicts, mitigation and sustainable development alternatives. Environ Sci Policy 5:69–78

    Article  Google Scholar 

  • Van Dyck H, Baguette M (2005) Dispersal behavior in fragmented landscapes: routine or special movements? Basic Appl Ecol 6:535–545

    Article  Google Scholar 

  • Veddeler D, Schulze CH, Steffan-Dewenter I, Buchoori D, Tscharntke T (2005) The contributions of tropical secondary forest fragments to the conservation of fruit-feeding butterflies: effects of isolation and age. Biodiv Conserv 14(14):3577–3592

    Article  Google Scholar 

  • Wezel A, Bender S (2003) Plant species diversity of Homegardens of Cuba and its significance for household food supply. Agrofor Syst 57:37–47

    Article  Google Scholar 

  • Wiens JA, Hayward GD, Holthausen RS, Wisdom MJ (2008) Using surrogate species and groups for conservation planning and management. Biosci 58:241–252

    Article  Google Scholar 

  • Williams-Guillén K, McCann C, Martinez Sanchez JC, Koontz F (2006) Resource availability and habitat use by mantled howling monkeys in a Nicaraguan coffee plantation: can agroforests serve as core habitat for a forest mammal? Anim Conserv 9:331–338

    Article  Google Scholar 

Download references

Acknowledgments

The funding sources for the study include the School of Forest Resources and Conservation, the Tropical Conservation and Development Program, and the Working Forest in the Tropics Program, all at the University of Florida; the South Eastern Alliance of Graduate Students and Professoriate (SEAGEP), and the National Security Education Program Boren Fellowship. We are also grateful to the Institute for Ecological Research (IPE), Brazil, and its staff, well as to the Science Partners in Inquiry-based Collaborative Education GK-12 program, and the School of Agribusiness and Agriscience at Middle Tennessee State University. We would also like to acknowledge Purdue University’s statistical consulting services for their assistance with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Francesconi.

Appendix

Appendix

See Tables 4 and 5

Table 4 List of butterfly species at Agua Sumida
Table 5 List of butterfly species at Riberão Bonito

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francesconi, W., Nair, P.K.R., Levey, D.J. et al. Butterfly distribution in fragmented landscapes containing agroforestry practices in Southeastern Brazil. Agroforest Syst 87, 1321–1338 (2013). https://doi.org/10.1007/s10457-013-9640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-013-9640-y

Keywords

Navigation