Skip to main content
Log in

Production physiology of three native shrubs intercropped in a young longleaf pine plantation

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate how competition would affect the physiology, and thus productivity of American beautyberry (Callicarpa americana L.), wax myrtle [Morella cerifera (L.) Small] and inkberry [Ilex glabra (L.) A. Gray] when intercropped in a longleaf pine (Pinus palustris Mill.) plantation in the southeastern United States. The effect of competition was assessed via comparisons of mortality, biomass, light transmittance, gas exchange and soil moisture between intercropping and monoculture (treeless) treatments. Overall, shrubs in the intercropping treatment performed worse than those in the monoculture, with higher mortality, and reductions in biomass of 75.5, 50.6, and 68.7% for C. americana, M. cerifera and I. glabra, respectively. Root–shoot ratios for all species were significantly higher and soil moisture during dry periods was significantly lower in the intercropping treatment. Light transmittance below the pine canopy was high (57.7%) and I. glabra was the only species that exhibited reduced A max when belowground resources were not limiting. These results suggest that the effect of shading is minimal and belowground competition is likely the most important determinant of productivity in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baldwin JP (1975) A quantitative analysis of the factors affecting plant nutrient uptake from some soils. Eur J Soil Sci 26(3):195–206. doi:10.1111/j.1365-2389.1975.tb01943.x

    Article  CAS  Google Scholar 

  • Battaglia MA, Mitchell RJ, Mou PP, Pecot SD (2003) Light transmittance estimates in a longleaf pine woodland. For Sci 49(5):752–762

    Google Scholar 

  • Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371. doi:10.1146/annurev.es.10.110179.002031

    Article  Google Scholar 

  • Bazzaz FA (1996) Plants in changing environments: linking physiological, population and community ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bennett JM, Sinclair TR (1998) Water. In: Sinclair TR (ed) Principles of ecology in plant production. CABI, Cambridge, pp 103–120

    Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377. doi:10.1146/annurev.pp.28.060177.002035

    Article  CAS  Google Scholar 

  • Brockway DG, Outcalt KW (1998) Gap-phase regeneration in longleaf pine wiregrass ecosystems. For Ecol Manag 106(2–3):125–139. doi:10.1016/S0378-1127(97)00308-3

    Article  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965

    Article  Google Scholar 

  • Caton BP, Cope AE, Mortimer M (2003) Growth traits of diverse rice cultivars under severe competition: implications for screening for competitiveness. Field Crops Res 83(2):157–172. doi:10.1016/S0378-4290(03)00072-8

    Article  Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Ann Rev Ecol Syst 21:423. doi:10.1146/annurev.es.21.110190.002231

    Article  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Carbon input to terrestrial ecosystems. In: Principles of terrestrial ecosystem ecology. Springer, New York, pp 97–122

  • Chapin FS, Matson PA, Mooney HA (2002) Terrestrial production processes. In: Principles of terrestrial ecosystem ecology. Springer, New York, pp 123–149

  • Chappelle EW, McMurtrey JE, Wood FM, Newcomb WW (1984) Laser-induced fluorescence of green plants. 2: LIF caused by nutrient deficiencies in corn. Appl Opt 23(1):139–142

    Article  PubMed  CAS  Google Scholar 

  • Chirko CP, Gold MA, Nguyen PV, Jiang JP (1996) Influence of direction and distance from trees on wheat yield and photosynthetic photon flux density (Qp) in a Paulownia and wheat intercropping system. For Ecol Manag 83:171–180. doi:10.1016/0378-1127(96)03721-8

    Article  Google Scholar 

  • Ciompi S, Gentili E, Guidi L, Soldatini GF (1996) The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci 118(2):177–184. doi:10.1016/0168-9452(96)04442-1

    Article  CAS  Google Scholar 

  • Ewel JJ (1999) Natural ecosystems as models for the design for sustainable systems of land use. Agrofor Syst 45:1–21. doi:10.1023/A:1006219721151

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345. doi:10.1146/annurev.pp.33.060182.001533

    Article  CAS  Google Scholar 

  • Garrett HE, Buck L (1997) Agroforestry practice and policy in the United States of America. For Ecol Manag 91:5–15. doi:10.1016/S0378-1127(96)03884-4

    Article  Google Scholar 

  • Gillespie AR, Jose S, Mengel DB, Hoover WL, Pope PE, Biehle DJ, Stall T, Benjamin TJ (2000) Defining competition vectors in a temperate alleycropping system in the Midwestern USA: 1. Production physiology. Agrofor Syst 48(1):25–40. doi:10.1023/A:1006285205553

    Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15(1–2):63–92

    Article  Google Scholar 

  • Green S, Clothier B (1999) The root zone dynamics of water uptake by a mature apple tree. Plant Soil 206:61–77. doi:10.1023/A:1004368906698

    Article  Google Scholar 

  • Hagan DL, Jose S, Thetford M, Bohn K (2008) Partitioning of applied 15N fertilizer in a longleaf pine-native woody ornamental intercropping system. Agric Ecosyst Environ (in review)

  • Harrington TB, Dagley CM, Edwards MB (2003) Above- and below-ground competition from longleaf pine plantations limits performance of reintroduced species. For Sci 49(5):681–695

    Google Scholar 

  • Heyward F (1933) The root system of longleaf pine in the deep sands of western Florida. Ecology 14(2):136–148. doi:10.2307/1932880

    Article  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24(6):519–570. doi:10.1146/annurev.pp.24.060173.002511

    Article  CAS  Google Scholar 

  • Jose S, Gordon AM (2007) Applying ecological knowledge to agroforestry design: a synthesis. In: Jose S, Gordon AM (eds) Toward agroforestry design: an ecological approach. Springer, New York, pp 3–17

    Google Scholar 

  • Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions intemperate agroforestry. Agrofor Syst 61:237–255. doi:10.1023/B:AGFO.0000029002.85273.9b

    Article  Google Scholar 

  • Jose S, Jokela EJ, Miller DL (2006a) The longleaf pine ecosystem: an overview. In: Jose S, Jokela EJ, Miller DL (eds) The longleaf pine ecosystem: ecology, silviculture and restoration. Springer, New York, pp 297–333

    Google Scholar 

  • Jose S, Williams R, Zamora D (2006b) Belowground ecological interactions in mixed-species forest plantations. For Ecol Manag 233:231–239. doi:10.1016/j.foreco.2006.05.014

    Article  Google Scholar 

  • Kho RM (2007) Approaches to tree-environment-crop interactions. In: Daizy RB, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC, Boca Raton, pp 51–73

    Google Scholar 

  • Markwell J, Osterman JC, Mitchell JL (1995) Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth Res 45(3):467–472. doi:10.1007/BF00032301

    Article  Google Scholar 

  • Miller AW, Pallardy SG (2001) Resource competition across the tree-crop interface in a maize-silver maple temperate alley cropping stand in Missouri. Agrofor Syst 53:247–259. doi:10.1023/A:1013327510748

    Article  Google Scholar 

  • Netto AT, Campostrini E, Oliveira JG, Bressan-Smith RE (2005) Photosynthetic pigments, nitrogen, chlorophyll a and SPAD-502 readings in coffee leaves. Sci Hortic (Amsterdam) 104(2):199–209. doi:10.1016/j.scienta.2004.08.013

    Article  CAS  Google Scholar 

  • Niinemets U, Kull O, Tenhunen JD (1999) Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting deciduous trees. Int J Plant Sci 160(5):837–848. doi:10.1086/314180

    Article  PubMed  Google Scholar 

  • Ong CK, Corlett JE, Singh RP, Black CR (1991) Above and belowground interactions in agroforestry systems. For Ecol Manag 45:45–57. doi:10.1016/0378-1127(91)90205-A

    Article  Google Scholar 

  • Peek MS, Russek-Cohen E, Wait DA, Forseth IN (2002) Physiological response curve analysis using nonlinear mixed models. Oecologia 132:175–180. doi:10.1007/s00442-002-0954-0

    Article  Google Scholar 

  • Poorter H, Evans JR (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116:26–37. doi:10.1007/s004420050560

    Article  Google Scholar 

  • Porro D, Dorigatti C, Steffani M, Ceschini A (2000) Use of SPAD meter in diagnosis of nutritional status in apple and grapevine. Proceedings of the IV international symposium on mineral nutrition of deciduous fruit crops. ISHS Acta Horticul 564:243–252

    Google Scholar 

  • Schroth G (1999) A review of belowground interactions in agroforestry, focusing on mechanisms and management options. Agrofor Syst 43:5–34. doi:10.1023/A:1026443018920

    Article  Google Scholar 

  • Sugiharto B, Miyata K, Nakamoto H, Sasakawa H, Sugiyama T (1990) Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf. Plant Physiol 92:963–969. doi:10.1104/pp.92.4.963

    Article  PubMed  CAS  Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method for estimating root length. J Ecol 63:995–1001

    Article  Google Scholar 

  • Van Noordwijk M, Lawson G, Soumare A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxley P (eds) Tree–crop interactions: a physiological approach. CAB International, Wallingford, pp 319–364

    Google Scholar 

  • Vandermeer J (1992) The ecology of intercropping. Cambridge University Press, Cambridge

    Google Scholar 

  • Wanvestraut RH, Jose S, Nair PKR, Brecke BJ (2004) Competition for water in a pecan (Carya illinoensis K. Koch)—cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Agrofor Syst 60:167–179. doi:10.1023/B:AGFO.0000013292.29487.7a

    Article  Google Scholar 

  • Zamora D, Jose S, Napolitano K (2008) Competition for applied 15N fertilizer in a loblolly pine (Pinus taeda L.)–cotton (Gossypium hirsutum L.) alleycropping system. Agric Ecosyst Environ (in press)

  • Zhang Li (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient use efficiency. Plant Soil 248:305–312. doi:10.1023/A:1022352229863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff at the West Florida Research and Education Center, particularly Marti Occhipinti, Barry Ballard, Melvin Gramke and Doug Hatfield, for their assistance with plot establishment, data collection and logistics. The efforts of Jimmie Jarratt, Gerardo Celis, Pedram Daneshgar and Meghan Brennan, who contributed in various capacities, are also greatly appreciated. This research was supported by a grant from the USDA Tropical and Subtropical Agriculture Research (T-STAR) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L. Hagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagan, D.L., Jose, S., Thetford, M. et al. Production physiology of three native shrubs intercropped in a young longleaf pine plantation. Agroforest Syst 76, 283–294 (2009). https://doi.org/10.1007/s10457-009-9216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-009-9216-z

Keywords

Navigation