Skip to main content
Log in

Lymphangiogenesis and accumulation of reparative macrophages contribute to liver repair after hepatic ischemia–reperfusion injury

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Hepatic tissue repair plays a critical role in determining the outcome of hepatic ischemia–reperfusion (I/R) injury. Hepatic lymphatics participate in the clearance of dead tissues and contribute to the reparative process after acute hepatic injury; however, it remains unknown whether lymphangiogenesis in response to hepatic inflammation is involved in liver repair. Herein, we determined if hepatic lymphangiogenesis improves liver repair after hepatic I/R injury. Using a mouse model of hepatic I/R injury, we investigated hepatic lymphatic structure, growth, and function in injured murine livers. Hepatic I/R injury enhanced lymphangiogenesis around the portal tract and this was associated with increased expression of pro-lymphangiogenic growth factors including vascular endothelial growth factor (VEGF)-C and VEGF-D. Recombinant VEGF-D treatment facilitated liver repair in association with the expansion of lymphatic vessels and increased expression of genes related to the reparative macrophage phenotype. Treatment with a VEGF receptor 3 (VEGFR3) inhibitor suppressed liver repair, lymphangiogenesis, drainage function, and accumulation of VEGFR3-expressing reparative macrophages. VEGF-C and VEGF-D upregulated expression of genes related to lymphangiogenic factors and the reparative macrophage phenotype in cultured macrophages. These results suggest that activation of VEGFR3 signaling increases lymphangiogenesis and the number of reparative macrophages, both of which play roles in liver repair. Expanded lymphatics and induction of reparative macrophage accumulation may be therapeutic targets to enhance liver repair after hepatic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

BM:

Bone marrow

BMM:

Bone marrow-derived macrophage

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

H&E:

Hematoxylin and eosin

IL:

Interleukin

i.p.:

Intraperitoneal

I/R:

Ischemia–reperfusion

LVA:

Lymphatic vessel area

LVD:

Lymphatic vessel density

LYVE:

Lymphatic vessel endothelial hyaluronan receptor

MR:

Mannose receptor

MVA:

Microvessel area

MVD:

Microvessel density

PBS:

Phosphate-buffered saline

PCNA:

Proliferating cell nuclear antigen

SD:

Standard deviation

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

VEGFR3:

Vascular endothelial growth factor receptor 3

References

  1. Clavien PA, Petrowsky H, DeOliveira ML, Graf R (2007) Strategies for safer liver surgery and partial liver transplantation. N Engl J Med 356:1545–1559

    Article  Google Scholar 

  2. Lentsch AB (2012) Regulatory mechanisms of injury and repair after hepatic ischemia/reperfusion. Scientifica 2012:513192. https://doi.org/10.6064/2012/513192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17(11):1371–1380. https://doi.org/10.1038/nm.2545

    Article  CAS  PubMed  Google Scholar 

  4. Kang S, Lee SP, Kim KE, Kim HZ, Memet S, Koh GY (2009) Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113:2605–2613. https://doi.org/10.1182/blood-2008-07-166934

    Article  CAS  PubMed  Google Scholar 

  5. Dieterich LC, Seidel CD, Detmar M (2014) Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 17:359–371. https://doi.org/10.1007/s10456-013-9406-1

    Article  CAS  PubMed  Google Scholar 

  6. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during devel-opment. Proc Natl Acad Sci USA 92:3566–3570

    Article  CAS  Google Scholar 

  7. Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660. https://doi.org/10.1038/nature07083

    Article  CAS  PubMed  Google Scholar 

  8. D’Alessio S, Correale C, Tacconi C, Gandelli A, Pietrogrande G, Vetrano S, Genua M, Arena V, Spinelli A, Peyrin-Biroulet L, Fiocchi C, Danese S (2014) VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest 124:3863–3878. https://doi.org/10.1172/JCI72189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J, Jiao S, Gao Y, Liu C, Duan Z, Li D, He Y, Wei B, Wang H (2014) Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity 40:501–514. https://doi.org/10.1016/j.immuni.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  10. Kataru RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE, Han SH, Alitalo K, Koh GY (2009) Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113:5650–5659. https://doi.org/10.1182/blood-2008-09-176776

    Article  CAS  PubMed  Google Scholar 

  11. Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117:4667–4678. https://doi.org/10.1182/blood-2010-10-316356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim H, Kataru RP, Koh GY (2014) Inflammation-associated lymphangiogenesis: a double-edged sword? J Clin Invest 124:936–942. https://doi.org/10.1172/JCI71607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vollmar B, Wolf B, Siegmund S, Katsen AD, Menger MD (1997) Lymph vessel expansion and function in the development of hepatic fibrosis and cirrhosis. Am J Pathol 151:169–175

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamauchi Y, Michitaka K, Onji M (1998) Morphometric analysis of lymphatic and blood vessels in human chronic viral liver diseases. Am J Pathol 153:1131–1137

    Article  CAS  Google Scholar 

  15. Tamburini BAJ, Finlon JM, Gillen AE, Kriss MS, Riemondy KA, Fu R, Schuyler RP, Hesselberth JR, Rosen HR, Burchill MA (2019) Chronic liver disease in humans causes expansion and differentiation of liver lymphatic endothelial cells. Front Immunol 10:1036. https://doi.org/10.3389/fimmu.2019.01036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanaka M, Iwakiri Y (2018) Lymphatics in the liver. Curr Opin Immunol 53:137–142. https://doi.org/10.1016/j.coi.2018.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishizawa N, Ito Y, Eshima K, Ohkubo H, Kojo K, Inoue T, Raouf J, Jakobsson PJ, Uematsu S, Akira S, Narumiya S, Watanabe M, Majima M (2018) Inhibition of microsomal prostaglandin E synthase-1 facilitates liver repair after hepatic injury in mice. J Hepatol 69:110–120. https://doi.org/10.1016/j.jhep.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  18. Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B, Adams RH (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484:110–114. https://doi.org/10.1038/nature10908

    Article  CAS  PubMed  Google Scholar 

  19. Mishima T, Ito Y, Nishizawa N, Amano H, Tsujikawa K, Miyaji K, Watanabe M, Majima M (2017) RAMP1 signaling improves lymphedema and promotes lymphangiogenesis in mice. J Surg Res 2017 219:50–60. https://doi.org/10.1016/j.jss.2017.05.124

    Article  CAS  PubMed  Google Scholar 

  20. Barbier L, Tay SS, McGuffog C, Triccas JA, McCaughan GW, Bowen DG, Bertolino P (2012) Two lymph nodes draining the mouse liver are the preferential site of DC migration and T cell activation. J Hepatol 57:352–358. https://doi.org/10.1016/j.jhep.2012.03.023

    Article  CAS  PubMed  Google Scholar 

  21. Kato T, Ito Y, Hosono K, Suzuki T, Tamaki H, Minamino T, Kato S, Sakagami H, Shibuya M, Majima M (2011) Vascular endothelial growth factor receptor-1 signaling promotes liver repair through restoration of liver microvasculature after acetaminophen hepatotoxicity. Toxicol Sci 120:218–229. https://doi.org/10.1093/toxsci/kfq366

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka M, Iwakiri Y (2016) The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol 2:733–749. https://doi.org/10.1016/j.jcmgh.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yokomori H, Oda M, Kaneko F, Kawachi S, Tanabe M, Yoshimura K, Kitagawa Y, Hibi T (2010) Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver–re-evaluations of microlymphatic abnormalities. BMC Gastroenterol 10:131. https://doi.org/10.1186/1471-230X-10-131

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oikawa H, Masuda T, Sato S, Yashima A, Suzuki K, Sato S, Satodate R (1998) Changes in lymph vessels and portal veins in the portal tract of patients with idiopathic portal hypertension: a morphometric study. Hepatology 27:1607–1610

    Article  CAS  Google Scholar 

  25. Matsuda H, Hosono K, Tsuru S, Kurashige C, Sekiguchi K, Akira S, Uematsu S, Okamoto H, Majima M (2015) Roles of mPGES-1, an inducible prostaglandin E synthase, in enhancement of LPS-induced lymphangiogenesis in a mouse peritonitis model. Life Sci 142:1–7. https://doi.org/10.1016/j.lfs.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  26. Hosono K, Suzuki T, Tamaki H, Sakagami H, Hayashi I, Narumiya S, Alitalo K, Majima M (2011) Roles of prostaglandin E2-EP3/EP4 receptor signaling in the enhancement of lymphangiogenesis during fibroblast growth factor-2-induced granulation formation. Arterioscler Thromb Vasc Biol 31:1049–1058. https://doi.org/10.1161/ATVBAHA.110.222356

    Article  CAS  PubMed  Google Scholar 

  27. Hosono K, Isonaka R, Kawakami T, Narumiya S, Majima M (2016) Signaling of prostaglandin E receptors, EP3 and EP4 facilitates wound healing and lymphangiogenesis with enhanced recruitment of M2 macrophages in mice. PLoS ONE 11:e0162532. https://doi.org/10.1371/journal.pone.0162532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okizaki S, Ito Y, Hosono K, Oba K, Ohkubo H, Kojo K, Nishizawa N, Shibuya M, Shichiri M, Majima M (2016) Vascular endothelial growth factor receptor type 1 signaling prevents delayed wound healing in diabetes by attenuating the production of IL-1β by recruited macrophages. Am J Pathol 186:1481–1498. https://doi.org/10.1016/j.ajpath.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  29. Kim KE, Koh YJ, Jeon BH, Jang C, Han J, Kataru RP, Schwendener RA, Kim JM, Koh GY (2009) Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 175:1733–1745. https://doi.org/10.2353/ajpath.2009.090133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zgraggen S, Ochsenbein AM, Detmar M (2013) An important role of blood and lymphatic vessels in inflammation and allergy. J Allergy 2013:672381. https://doi.org/10.1155/2013/672381

    Article  CAS  Google Scholar 

  31. Henri O, Pouehe C, Houssari M, Galas L, Nicol L, Edwards-Lévy F, Henry JP, Dumesnil A, Boukhalfa I, Banquet S, Schapman D, Thuillez C, Richard V, Mulder P, Brakenhielm E (2016) Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133:1484–1497. https://doi.org/10.1161/CIRCULATIONAHA.115.020143 (discussion 1497)

    Article  CAS  PubMed  Google Scholar 

  32. Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 156:1499–1504

    Article  CAS  Google Scholar 

  33. Mäkinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. Embo J 20:4762–4773

    Article  Google Scholar 

  34. Guo R, Zhou Q, Proulx ST, Wood R, Ji RC, Ritchlin CT, Pytowski B, Zhu Z, Wang YJ, Schwarz EM, Xing L (2009) Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum 60:2666–2676. https://doi.org/10.1002/art.24764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yl€a-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115:247–257

    Article  CAS  Google Scholar 

  36. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468:310–315. https://doi.org/10.1038/nature09493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tacconi C, Ungaro F, Correale C, Arena V, Massimino L, Detmar M, Spinelli A, Carvello M, Mazzone M, Oliveira AI, Rubbino F, Garlatti V, Spanò S, Lugli E, Colombo FS, Malesci A, Peyrin-Biroulet L, Vetrano S, Danese S, D’Alessio S (2019) Activation of the VEGFC/VEGFR3 pathway induces tumor immune escape in colorectal cancer. Cancer Res 79(16):4196–4210. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  38. Krenkel O, Tacke F (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17:306–321. https://doi.org/10.1038/nri.2017.11

    Article  CAS  PubMed  Google Scholar 

  39. Ohkubo H, Ito Y, Minamino T, Eshima K, Kojo K, Okizaki S, Hirata M, Shibuya M, Watanabe M, Majima M (2014) VEGFR1-positive macrophages facilitate liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion injury. PLoS ONE 9:e105533. https://doi.org/10.1371/journal.pone.0105533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Michiko Ogino and Kyoko Yoshikawa for their technical assistance. This research was supported by research Grants (18K16373, 18K15760 18H02605, and 19K09156) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology and by a Project Research Grant from the Graduate School of Medical Sciences, Kitasato University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Majima.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All experimental procedures were approved by the Animal Experimentation and Ethics Committee of the Kitasato University School of Medicine (2017-59) and were performed in accordance with the guidelines for animal experiments outlined by the Kitasato University School of Medicine, which are in accordance with the Guidelines for Proper Conduct of Animal Experiments published by the Science Council of Japan. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 5430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamoto, S., Ito, Y., Nishizawa, N. et al. Lymphangiogenesis and accumulation of reparative macrophages contribute to liver repair after hepatic ischemia–reperfusion injury. Angiogenesis 23, 395–410 (2020). https://doi.org/10.1007/s10456-020-09718-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09718-w

Keywords

Navigation