Skip to main content

Advertisement

Log in

VEGF receptor-2-specific signaling mediated by VEGF-E induces hemangioma-like lesions in normal and in malignant tissue

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Viral VEGF-E (ovVEGF-E), a homolog of VEGF-A, was discovered in the genome of Orf virus. Together with VEGF-A, B, C, D, placental growth factor (PlGF) and snake venom VEGF (svVEGF), ovVEGF-E is a member of the VEGF family of potent angiogenesis factors with a bioactivity similar to VEGF-A: it induces proliferation, migration and sprouting of cultured vascular endothelial cells and proliferative lesions in the skin of sheep, goat and man that are characterized by massive capillary proliferation and dilation. These biological functions are mediated exclusively via its interaction with VEGF receptor-2 (VEGFR-2). Here, we have generated transgenic mice specifically expressing ovVEGF-E in β-cells of the endocrine pancreas (Rip1VEGF-E; RVE). RVE mice show an increase in number and size of the islets of Langerhans and a distorted organization of insulin and glucagon-expressing cells. Islet endothelial cells of RVE mice hyper-proliferate and form increased numbers of functional blood vessels. In addition, the formation of disorganized lymphatic vessels and increased immune cell infiltration is observed. Upon crossing RVE single-transgenic mice with Rip1Tag2 (RT2) transgenic mice, a well-studied model of pancreatic β-cell carcinogenesis, double-transgenic mice (RT2;RVE) display hyper-proliferation of endothelial cells resulting in the formation of hemangioma-like lesions. In addition, RT2;RVE mice exhibit activated lymphangiogenesis at the tumor periphery and increased neutrophil and macrophage tumor infiltration and micro-metastasis to lymph nodes and lungs. These phenotypes markedly differ from the phenotypes observed with the transgenic expression of the other VEGF family members in β-cells of normal mice and of RT2 mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936. doi:10.1038/nature04478

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Folkman J (1971) Tumor angiogenesis: therapeutic implications. New Engl J Med 285(21):1182–1186. doi:10.1056/NEJM197111182852108

    Article  CAS  PubMed  Google Scholar 

  4. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410. doi:10.1038/nrc1093

    Article  CAS  PubMed  Google Scholar 

  5. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439. doi:10.1038/380435a0

    Article  CAS  PubMed  Google Scholar 

  6. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. doi:10.1038/380439a0

    Article  CAS  PubMed  Google Scholar 

  7. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371. doi:10.1038/nrm1911

    Article  CAS  PubMed  Google Scholar 

  8. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. doi:10.1177/1947601911423031

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882. doi:10.1038/nrc3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66. doi:10.1038/376062a0

    Article  CAS  PubMed  Google Scholar 

  11. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95(16):9349–9354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70. doi:10.1038/376066a0

    Article  CAS  PubMed  Google Scholar 

  13. Murakami M, Zheng Y, Hirashima M, Suda T, Morita Y, Ooehara J, Ema H, Fong GH, Shibuya M (2008) VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol 28(4):658–664. doi:10.1161/ATVBAHA.107.150433

    Article  CAS  PubMed  Google Scholar 

  14. Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477. doi:10.1038/nrclinonc.2009.94

    Article  CAS  PubMed  Google Scholar 

  15. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803. doi:10.1038/nrc909

    Article  CAS  PubMed  Google Scholar 

  16. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. doi:10.1210/er.2003-0027

    Article  CAS  PubMed  Google Scholar 

  17. Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8(12):942–956. doi:10.1038/nrc2524

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, VandenDriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583. doi:10.1038/87904

    Article  CAS  PubMed  Google Scholar 

  19. Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475. doi:10.1016/j.cell.2007.08.038

    Article  CAS  PubMed  Google Scholar 

  20. Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vahakangas E, Korpisalo P, Enholm B, Carmeliet P, Alitalo K, Eriksson U, Yla- Herttuala S (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119(6):845–856. doi:10.1161/CIRCULATIONAHA.108.816454

    Article  PubMed  Google Scholar 

  21. Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yla-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921. doi:10.1038/nature08945

    Article  CAS  PubMed  Google Scholar 

  22. Gunningham SP, Currie MJ, Han C, Robinson BA, Scott PA, Harris AL, Fox SB (2001) VEGF-B expression in human primary breast cancers is associated with lymph node metastasis but not angiogenesis. J Pathol 193(3):325–332. doi:10.1002/path.814

    Article  CAS  PubMed  Google Scholar 

  23. Gunningham SP, Currie MJ, Han C, Turner K, Scott PA, Robinson BA, Harris AL, Fox SB (2001) Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcinomas: regulation by the von Hippel-Lindau gene and hypoxia. Cancer Res 61(7):3206–3211

    CAS  PubMed  Google Scholar 

  24. Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA, Fox SB (2003) The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol 200(2):183–194. doi:10.1002/path.1339

    Article  CAS  PubMed  Google Scholar 

  25. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network f ormation. Nature 454(7204):656–660. doi:10.1038/nature07083

    Article  CAS  PubMed  Google Scholar 

  26. Baldwin ME, Halford MM, Roufail S, Williams RA, Hibbs ML, Grail D, Kubo H, Stacker SA, Achen MG (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25(6):2441–2449. doi:10.1128/MCB.25.6.2441-2449.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80. doi:10.1038/ni1013

    Article  CAS  PubMed  Google Scholar 

  28. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438(7070):946–953. doi:10.1038/nature04480

    Article  CAS  PubMed  Google Scholar 

  29. Kurahara H, Takao S, Maemura K, Shinchi H, Natsugoe S, Aikou T (2004) Impact of vascular endothelial growth factor-C and -D expression in human pancreatic cancer: its relationship to lymph node metastasis. Clin Cancer Res 10(24):8413–8420. doi:10.1158/1078-0432.CCR-04-0379

    Article  CAS  PubMed  Google Scholar 

  30. Jiang HG, Gao M, Tang WP, Li FH, Cai QZ (2005) Expression and significance of VEGF, VEGF-C, and VEGF-D in papillary thyroid carcinoma. Ai Zheng 24(9):1136–1139

    CAS  PubMed  Google Scholar 

  31. Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68(1):84–92

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Haig DM, Mercer AA (1998) Ovine diseases. Orf Vet Res 29(3–4):311–326

    CAS  PubMed  Google Scholar 

  33. Rziha HJ, Henkel M, Cottone R, Meyer M, Dehio C, Buttner M (1999) Parapoxviruses: potential alternative vectors for directing the immune response in permissive and non- permissive hosts. J Biotechnol 73(2–3):235–242

    Article  CAS  PubMed  Google Scholar 

  34. Tan ST, Blake GB, Chambers S (1991) Recurrent orf in an immunocompromised host. Br J Plast Surg 44(6):465–467

    Article  CAS  PubMed  Google Scholar 

  35. Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Buttner M, Rziha HJ, Dehio C (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 18(2):363–374. doi:10.1093/emboj/18.2.363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M (1998) A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 273(47):31273–31282

    Article  CAS  PubMed  Google Scholar 

  37. Wise LM, Veikkola T, Mercer AA, Savory LJ, Fleming SB, Caesar C, Vitali A, Makinen T, Alitalo K, Stacker SA (1999) Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci USA 96(6):3071–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cebe-Suarez S, Grunewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K (2008) Orf virus VEGF-E NZ2 promotes paracellular NRP- 1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J Off Publ Fed Am Soc Exp Biol 22(8):3078–3086. doi:10.1096/fj.08-107219

    CAS  Google Scholar 

  39. Cudmore M, Ahmad S, Al-Ani B, Hewett P, Ahmed S, Ahmed A (2006) VEGF-E activates endothelial nitric oxide synthase to induce angiogenesis via cGMP and PKG-independent pathways. Biochem Biophys Res Commun 345(4):1275–1282. doi:10.1016/j.bbrc.2006.04.031

    Article  CAS  PubMed  Google Scholar 

  40. Kiba A, Sagara H, Hara T, Shibuya M (2003) VEGFR-2-specific ligand VEGF-E induces non-edematous hyper-vascularization in mice. Biochem Biophys Res Commun 301(2):371–377

    Article  CAS  PubMed  Google Scholar 

  41. Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015):115–122

    Article  CAS  PubMed  Google Scholar 

  42. Labosky PA, Barlow DP, Hogan BL (1994) Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found Symp 182:157–168 discussion 168–178

    CAS  PubMed  Google Scholar 

  43. Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G (2000) Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 60(24):7163–7169

    CAS  PubMed  Google Scholar 

  44. Gannon G, Mandriota SJ, Cui L, Baetens D, Pepper MS, Christofori G (2002) Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res 62(2):603–608

    CAS  PubMed  Google Scholar 

  45. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815. doi:10.1016/S0002-9440(10)63540-7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812

    Article  CAS  PubMed  Google Scholar 

  47. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61. doi:10.1038/339058a0

    Article  CAS  PubMed  Google Scholar 

  48. Ohzato H, Gotoh M, Monden M, Dono K, Kanai T, Mori T (1991) Improvement in islet yield from a cold-preserved pancreas by pancreatic ductal collagenase distention at the time of harvesting. Transplantation 51(3):566–570

    Article  CAS  PubMed  Google Scholar 

  49. Innocenti M, Tenca P, Frittoli E, Faretta M, Tocchetti A, Di Fiore PP, Scita G (2002) Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol 156(1):125–136. doi:10.1083/jcb.200108035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, Burrows P, Frieden IJ, Garzon MC, Lopez-Gutierrez JC, Lord DJ, Mitchel S, Powell J, Prendiville J, Vikkula M, Board I, Scientific C (2015) Vascular anomalies classification: recommendations from the International Society for the Study of Vascular Anomalies. Pediatrics 136(1):e203–e214. doi:10.1542/peds.2014-3673

    Article  PubMed  Google Scholar 

  51. Betsholtz C, Karlsson L, Lindahl P (2001) Developmental roles of platelet-derived growth factors. BioEssays 23(6):494–507. doi:10.1002/bies.1069

    Article  CAS  PubMed  Google Scholar 

  52. Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ, Cavenee WK, Cheng SY (2003) Platelet- derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162(4):1083–1093. doi:10.1016/S0002-9440(10)63905-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72(6):835–846

    Article  CAS  PubMed  Google Scholar 

  54. Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 90(16):7533–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367(6463):576–579. doi:10.1038/367576a0

    Article  CAS  PubMed  Google Scholar 

  56. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502. doi:10.1101/cshperspect.a006502

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bates DO, Harper SJ (2002) Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol 39(4–5):225–237

    Article  CAS  Google Scholar 

  58. Wise LM, Ueda N, Dryden NH, Fleming SB, Caesar C, Roufail S, Achen MG, Stacker SA, Mercer AA (2003) Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens. J Biol Chem 278(39):38004–38014. doi:10.1074/jbc.M301194200

    Article  CAS  PubMed  Google Scholar 

  59. Shu X, Wu W, Mosteller RD, Broek D (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22(22):7758–7768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Crnic I, Strittmatter K, Cavallaro U, Kopfstein L, Jussila L, Alitalo K, Christofori G (2004) Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 64(23):8630–8638. doi:10.1158/0008-5472.CAN-04-2523

    Article  CAS  PubMed  Google Scholar 

  61. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682. doi:10.1093/emboj/20.4.672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kopfstein L, Veikkola T, Djonov VG, Baeriswyl V, Schomber T, Strittmatter K, Stacker SA, Achen MG, Alitalo K, Christofori G (2007) Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol 170(4):1348–1361. doi:10.2353/ajpath.2007.060835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE (2007) Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 28(12):519–524. doi:10.1016/j.it.2007.09.004

    Article  PubMed  Google Scholar 

  64. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514. doi:10.1038/nrc2868

    Article  CAS  PubMed  Google Scholar 

  65. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189. doi:10.1016/j.cell.2005.10.036

    Article  CAS  PubMed  Google Scholar 

  66. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266. doi:10.1016/j.cell.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  67. Ji Y, Chen S, Li K, Li L, Xu C, Xiang B (2014) Signaling pathways in the development of infantile hemangioma. J Hematol Oncol 7:13. doi:10.1186/1756-8722-7-13

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14(11):1236–1246. doi:10.1038/nm.1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Picard A, Boscolo E, Khan ZA, Bartch TC, Mulliken JB, Vazquez MP, Bischoff J (2008) IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res 63(3):263–267. doi:10.1203/PDR.0b013e318163a243

    Article  PubMed  PubMed Central  Google Scholar 

  70. Uutela M, Wirzenius M, Paavonen K, Rajantie I, He Y, Karpanen T, Lohela M, Wiig H, Salven P, Pajusola K, Eriksson U, Alitalo K (2004) PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 104(10):3198–3204. doi:10.1182/blood-2004-04-1485

    Article  CAS  PubMed  Google Scholar 

  71. Schomber T, Kopfstein L, Djonov V, Albrecht I, Baeriswyl V, Strittmatter K, Christofori G (2007) Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. Cancer Res 67(22):10840–10848. doi:10.1158/0008-5472.CAN-07-1034

    Article  CAS  PubMed  Google Scholar 

  72. Albrecht I, Kopfstein L, Strittmatter K, Schomber T, Falkevall A, Hagberg CE, Lorentz P, Jeltsch M, Alitalo K, Eriksson U, Christofori G, Pietras K (2010) Suppressive effects of vascular endothelial growth factor-B on tumor growth in a mouse model of pancreatic neuroendocrine tumorigenesis. PLoS One 5(11):e14109. doi:10.1371/journal.pone.0014109

    Article  PubMed  PubMed Central  Google Scholar 

  73. Marcellini M, De Luca N, Riccioni T, Ciucci A, Orecchia A, Lacal PM, Ruffini F, Pesce M, Cianfarani F, Zambruno G, Orlandi A, Failla CM (2006) Increased melanoma growth and metastasis spreading in mice overexpressing placenta growth factor. Am J Pathol 169(2):643–654. doi:10.2353/ajpath.2006.051041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274(45):32127–32136

    Article  CAS  PubMed  Google Scholar 

  75. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949

    Article  CAS  PubMed  Google Scholar 

  76. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Partanen TA, Alitalo K, Miettinen M (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86(11):2406–2412

    Article  CAS  PubMed  Google Scholar 

  78. Alam A, Herault JP, Barron P, Favier B, Fons P, Delesque-Touchard N, Senegas I, Laboudie P, Bonnin J, Cassan C, Savi P, Ruggeri B, Carmeliet P, Bono F, Herbert JM (2004) Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun 324(2):909–915. doi:10.1016/j.bbrc.2004.08.237

    Article  CAS  PubMed  Google Scholar 

  79. Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Soderberg O, Anisimov A, Kholova I, Pytowski B, Baldwin M, Yla-Herttuala S, Alitalo K, Kreuger J, Claesson-Welsh L (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 29(8):1377–1388. doi:10.1038/emboj.2010.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical, non redundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1(2):193–202

    Article  CAS  PubMed  Google Scholar 

  81. Jimenez X, Lu D, Brennan L, Persaud K, Liu M, Miao H, Witte L, Zhu Z (2005) A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 4(3):427–434. doi:10.1158/1535-7163.MCT-04-0261

    CAS  PubMed  Google Scholar 

  82. Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, Skobe M, Boardman KC, Swartz MA (2005) Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 97(1):14–21. doi:10.1093/jnci/dji003

    Article  CAS  PubMed  Google Scholar 

  83. Orleth A, Mamot C, Rochlitz C, Ritschard R, Alitalo K, Christofori G, Wicki A (2016) Simultaneous targeting of VEGF-receptors 2 and 3 with immunoliposomes enhances therapeutic efficacy. J Drug Target 24(1):80–89. doi:10.3109/1061186X.2015.1056189

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to H. Antoniadis, U. Schmieder and R. Jost for the technical support. We thank C. Dehio (Biocenter, University of Basel) for important reagents and M. Saxena (Department of Biomedicine, University of Basel) for critical comments on the manuscript. This work was supported by a Collaborative Cancer Research Project of the Swiss Cancer League (CCRP OCS-01812-12-2005) and MD-PhD fellowships to R. B. and L. K. by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesta Fagiani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagiani, E., Lorentz, P., Bill, R. et al. VEGF receptor-2-specific signaling mediated by VEGF-E induces hemangioma-like lesions in normal and in malignant tissue. Angiogenesis 19, 339–358 (2016). https://doi.org/10.1007/s10456-016-9508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9508-7

Keywords

Navigation