Skip to main content

Advertisement

Log in

Targeting VEGF-A with a vaccine decreases inflammation and joint destruction in experimental arthritis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Objectives

Inflammation and angiogenesis are two tightly linked processes in arthritis, and therapeutic targeting of pro-angiogenic factors may contribute to control joint inflammation and synovitis progression. In this work, we explored whether vaccination against vascular endothelial growth factor (VEGF) ameliorates collagen-induced arthritis (CIA).

Methods

Anti-VEGF vaccines were heterocomplexes consisting of the entire VEGF cytokine (or a VEGF-derived peptide) linked to the carrier protein keyhole limpet hemocyanin (KLH). Two kinds of vaccines were separately tested in two independent experiments of CIA. In the first, we tested a kinoid of the murine cytokine VEGF (VEGF-K), obtained by conjugating VEGF-A to KLH. For the second, we selected two VEGF-A-derived peptide sequences to produce heterocomplexes (Vpep1-K and Vpep2-K). DBA/1 mice were immunized with either VEGF-K, Vpep1-K, or Vpep2-K, before CIA induction. Clinical and histological scores of arthritis, anti-VEGF, anti-Vpep Ab titers, and anti-VEGF Abs neutralizing capacity were determined.

Results

Both VEGF-K and Vpep1-K significantly ameliorated clinical arthritis scores and reduced synovial inflammation and joint destruction at histology. VEGF-K significantly reduced synovial vascularization. None of the vaccines reduced anti-collagen Ab response in mice. Both VEGF-K and Vpep1-K induced persistently high titers of anti-VEGF Abs capable of inhibiting VEGF-A bioactivity.

Conclusion

Vaccination against the pro-angiogenic factor VEGF-A leads to the production of anti-VEGF polyclonal Abs and has a significant anti-inflammatory effect in CIA. Restraining Ab response to a single peptide sequence (Vpep1) with a peptide vaccine effectively protects immunized mice from joint inflammation and destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hirohata S, Sakakibara J (1999) Angioneogenesis as a possible elusive triggering factor in rheumatoid arthritis. Lancet 353:1331

    Article  PubMed  CAS  Google Scholar 

  2. Mansson B, Carey D, Alini M et al (1995) Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest 95:1071–1077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chu CQ, Field M, Feldmann M, Maini RN (1991) Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis Rheum 34:1125–1132

    Article  PubMed  CAS  Google Scholar 

  4. Madhok R, Crilly A, Watson J, Capell HA (1993) Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis 52:232–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Miossec P (2003) Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum 48:594–601

    Article  PubMed  CAS  Google Scholar 

  6. Semerano L, Clavel G, Assier E, Denys A, Boissier MC (2011) Blood vessels, a potential therapeutic target in rheumatoid arthritis? Joint Bone Spine 78:118–123

    Article  PubMed  Google Scholar 

  7. Kremer JM, Blanco R, Brzosko M et al (2011) Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis Rheum 63:609–621

    Article  PubMed  CAS  Google Scholar 

  8. Otrock ZK, Makarem JA, Shamseddine AI (2007) Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis 38:258–268

    Article  PubMed  CAS  Google Scholar 

  9. Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9:225

    Article  PubMed  CAS  Google Scholar 

  10. Clavel G, Valvason C, Yamaoka K et al (2006) Relationship between angiogenesis and inflammation in experimental arthritis. Eur Cytokine Netw 17:202

    PubMed  CAS  Google Scholar 

  11. Clavel G, Marchiol-Fournigault C, Renault G et al (2008) Ultrasound and Doppler micro-imaging in a model of rheumatoid arthritis in mice. Ann Rheum Dis 67:1765–1772

    Article  PubMed  CAS  Google Scholar 

  12. Lu J, Kasama T, Kobayashi K et al (2000) Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J Immunol 164:5922–5927

    Article  PubMed  CAS  Google Scholar 

  13. De Bandt M, Ben Mahdi MH, Ollivier V et al (2003) Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J Immunol 171:4853–4859

    Article  PubMed  Google Scholar 

  14. Le Buanec H, Delavallée L, Bessis N et al (2006) TNFalpha kinoid vaccination-induced neutralizing antibodies to TNFalpha protect mice from autologous TNFalpha-driven chronic and acute inflammation. Proc Natl Acad Sci USA 103:19442–19447

    Article  PubMed  PubMed Central  Google Scholar 

  15. Delavallée L, Le Buanec H, Bessis N et al (2008) Early and long-lasting protection from arthritis in tumour necrosis factor alpha (TNFalpha) transgenic mice vaccinated against TNFalpha. Ann Rheum Dis 67:1332–1338

    Article  PubMed  Google Scholar 

  16. Semerano L, Biton J, Delavallée L et al (2013) Protection from articular damage by passive or active anti-tumour necrosis factor (TNF)-α immunotherapy in human TNF-α transgenic mice depends on anti-TNF-α antibody levels. Clin Exp Immunol 172:54–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Amit L, Ben-Aharon I, Vidal L, Leibovici L, Stemmer SM (2013) The impact of Bevacizumab (Avastin) on survival in metastatic solid tumors–a meta-analysis and systematic review. PLoS One 8:e51780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Rad FH, Le Buanec H, Paturance S et al (2007) VEGF kinoid vaccine, a therapeutic approach against tumor angiogenesis and metastases. Proc Natl Acad Sci USA 104:2837–2842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Muller YA, Christinger HW, Keyt BA, de Vos AM (1997) The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding. Structure 5:1325–1328

    Article  PubMed  CAS  Google Scholar 

  20. Kong JS, Yoo SA, Kim JW et al (2010) Anti-neuropilin-1 peptide inhibition of synoviocyte survival, angiogenesis, and experimental arthritis. Arthritis Rheum 62:179

    Article  PubMed  CAS  Google Scholar 

  21. Starzec A, Vassy R, Martin A et al (2006) Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 79:2370–2371

    Article  PubMed  CAS  Google Scholar 

  22. Iyer S, Leonidas DD, Swaminathan GJ et al (2001) The crystal structure of human placenta growth factor-1 (PlGF-1), an angiogenic protein, at 2.0 A resolution. J Biol Chem 276:12153–12161

    Article  PubMed  CAS  Google Scholar 

  23. Parker MW, Xu P, Li X, Vander Kooi CW (2012) Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J Biol Chem 287:11082–11089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M (1997) Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem 272:31582–31588

    Article  PubMed  CAS  Google Scholar 

  25. Miellot A, Zhu R, Diem S et al (2005) Activation of invariant NK T cells protects against experimental rheumatoid arthritis by an IL-10-dependent pathway. Eur J Immunol 35:3704–3713

    Article  PubMed  CAS  Google Scholar 

  26. Murakami M, Iwai S, Hiratsuka S et al (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108:1849–1856

    Article  PubMed  CAS  Google Scholar 

  27. Nam EH, Park SR, Kim PH (2010) TGF-beta1 induces mouse dendritic cells to express VEGF and its receptor (Flt-1) under hypoxic conditions. Exp Mol Med 42:606–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kim WU, Kang SS, Yoo SA et al (2006) Interaction of vascular endothelial growth factor 165 with neuropilin-1 protects rheumatoid synoviocytes from apoptotic death by regulating Bcl-2 expression and Bax translocation. J Immunol 177:5727–5735

    Article  PubMed  CAS  Google Scholar 

  29. Terme M, Tartour E, Taieb J (2013) VEGFA/VEGFR2-targeted therapies prevent the VEGFA-induced proliferation of regulatory T cells in cancer. Oncoimmunology 2:e25156

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hansen W, Hutzler M, Abel S et al (2013) Neuropilin 1 deficiency on CD4 + Foxp3 + regulatory T cells impairs mouse melanoma growth. J Exp Med 209:2001–2006

    Article  CAS  Google Scholar 

  31. Terme M, Pernot S, Marcheteau E et al (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 73:539–539

  32. Boissier MC, Assier E, Biton J et al (2009) Regulatory T cells (Treg) in rheumatoid arthritis. Joint Bone Spine 76:10–14

    Article  PubMed  CAS  Google Scholar 

  33. Nadkarni S, Mauri C, Ehrenstein MR (2007) Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp Med 204:33–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Biton J, Semerano L, Delavallée L et al (2011) Interplay between TNF and regulatory T cells in a TNF-driven murine model of arthritis. J Immunol 186:3899

    Article  PubMed  CAS  Google Scholar 

  35. Biton J, Boissier MC, Bessis N (2012) TNFα: activator or inhibitor of regulatory T cells? Joint Bone Spine 79:119–123

    Article  PubMed  CAS  Google Scholar 

  36. Nie H, Zheng Y, Li R et al (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med 19:322–328

    Article  PubMed  CAS  Google Scholar 

  37. Thiolat A, Semerano L, Pers YM et al (2014) Interleukin-6 receptor blockade enhances CD39 + regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumatol 66:273–283

    Article  PubMed  CAS  Google Scholar 

  38. Cortes J, Calvo V, Ramirez-Merino N et al (2012) Adverse events risk associated with bevacizumab addition to breast cancer chemotherapy: a meta-analysis. Ann Oncol 23:1130–1137

    Article  PubMed  CAS  Google Scholar 

  39. Zagury D, Burny A, Gallo RC (2001) Toward a new generation of vaccines: the anti-cytokine therapeutic vaccines. Proc Natl Acad Sci USA 98:8024–8029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bertin-Maghit SM, Capini CJ, Bessis N et al (2005) Improvement of collagen-induced arthritis by active immunization against murine IL-1beta peptides designed by molecular modelling. Vaccine 23:4228–4235

    Article  PubMed  CAS  Google Scholar 

  41. Capini CJ, Bertin-Maghit SM, Bessis N et al (2004) Active immunization against murine TNFalpha peptides in mice: generation of endogenous antibodies cross-reacting with the native cytokine and in vivo protection. Vaccine 22:3144–3153

    Article  PubMed  CAS  Google Scholar 

  42. Ratsimandresy RA, Duvallet E, Assier E et al (2011) Active immunization against IL-23p19 improves experimental arthritis. Vaccine 29:9329–9336

    Article  PubMed  CAS  Google Scholar 

  43. Hah YS, Koh YJ, Lim HS et al (2013) Double-antiangiogenic protein DAAP targeting vascular endothelial growth factor A and angiopoietins attenuates collagen-induced arthritis. Arthritis Res Ther 15:R85

    Article  PubMed  PubMed Central  Google Scholar 

  44. Williams RO, Feldmann M, Maini RN (1992) Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA 89:9784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Saidenberg-Kermanac’h N, Corrado A, Lemeiter D et al (2004) TNF-a antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone 35:1200–1207

    Article  PubMed  CAS  Google Scholar 

  46. Wang Y, Da G, Li H et al (2013) Avastin exhibits therapeutic effects on collagen-induced arthritis in rat model. Inflammation 36:1460–1467

    Article  PubMed  CAS  Google Scholar 

  47. Nagai T, Sato M, Kutsuna T et al (2010) Intravenous administration of anti-vascular endothelial growth factor humanized monoclonal antibody bevacizumab improves articular cartilage repair. Arthritis Res Ther 12:R178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yu L, Wu X, Cheng Z et al (2008) Interaction between bevacizumab and murine VEGF-A: a reassessment. Invest Ophthalmol Vis Sci 49:522–527

    Article  PubMed  Google Scholar 

  49. Choi ST, Kim JH, Seok JY et al (2009) Therapeutic effect of anti-vascular endothelial growth factor receptor I antibody in the established collagen-induced arthritis mouse model. Clin Rheumatol 28:333–337

    Article  PubMed  Google Scholar 

  50. Yoo SA, Bae DG, Ryoo JW et al (2005) Arginine-rich anti-vascular endothelial growth factor (anti-VEGF) hexapeptide inhibits collagen-induced arthritis and VEGF-stimulated productions of TNF-alpha and IL-6 by human monocytes. J Immunol 174:5846–5855

    Article  PubMed  CAS  Google Scholar 

  51. Delavallée L, Semerano L, Assier E et al (2009) Active immunization to tumor necrosis factor-alpha is effective in treating chronic established inflammatory disease: a long-term study in a transgenic model of arthritis. Arthritis Res Ther 11:R195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Durez P, Vandepapeliere P, Miranda P et al (2014) Therapeutic vaccination with TNF-kinoid in TNF antagonist-resistant rheumatoid arthritis: a phase II randomized, controlled clinical trial. PLoS One 9:e113465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in part by the French Centre National de la Recherche Scientifique and the Laboratory of Excellence Medalis (ANR-10-LABX-0034), Initiative of Excellence (IdEx), Strasbourg University. Pathophysiology, targets, and therapies of rheumatoid arthritis laboratory received grants from University of Paris 13, Agence Nationale de la Recherche (ANR CYTOVAC project) and Inserm (ITMOs IHP and CMN). VEGF kinoid (VEGF-K) was produced by NéoVacs SA (France). We thank Sonia Varela (animal facilities, Paris13 University) and Philippe Haumont for their technical contributions. Special thanks to Delphine Lemeiter, Roxane Hervé, and Matthieu Ribon for their invaluable help with synovial vascularization study. This work is dedicated to the memory of Anna Starzec.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures were approved by the Animal Care and Use Committee of the University of Paris 13 (ethical approval ID: Ce5/2010/036).

Authors’ contributions

L.S. participated in acquisition and interpretation of experimental data, performed statistical analysis, drafted and revised the manuscript. E.D. participated in peptide design, carried out mice immunization, evaluation of clinical arthritis, carried out immunoassay, and helped to draft the manuscript. N.B. carried out mice immunization and evaluation of clinical arthritis. N.M. carried out HUVEC inhibition with sera from peptide immunization. N.S. carried out the synthesis and coupling of peptide vaccines and performed peptide immunoassay. M.M. participated in the design and synthesis of peptide vaccines. G.G.V. conceived a part of the study, participated in the coordination and analysis of the data, and helped to draft the manuscript. EB carried out coupling of VEGF kinoid, immunoassay, and receptor binding inhibition assay. ML participated in the coordination of peptide design and synthesis. H.L. participated in the coordination and analysis of HUVEC inhibition and synovial vascularization. S.M. participated in the design, synthesis and coupling of peptide vaccines, analysis of the data and helped to draft the manuscript. M.C.B. conceived of the study, analysis of the data and helped to draft the manuscript. E.A. conceived of the study, participated in the coordination of the study, analysis of the data and helped to draft the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christophe Boissier.

Ethics declarations

Conflict of interest

Kinoid technology is patented by NéoVacs SA, and Vpep1 sequence is patented by University of Paris 13. G.G.V. and E.B. are employees of NéoVacs SA. M.C.B. is a member of the scientific board of NéoVacs SA. L.S., E.D., N.B., N.M., N.S., M.M., M.L., H.L., S.M., and E.A. have no competing interests to declare.

Additional information

Luca Semerano and Emilie Duvallet have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 75 kb)

Supplementary material 2 (JPEG 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semerano, L., Duvallet, E., Belmellat, N. et al. Targeting VEGF-A with a vaccine decreases inflammation and joint destruction in experimental arthritis. Angiogenesis 19, 39–52 (2016). https://doi.org/10.1007/s10456-015-9487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-015-9487-0

Keywords

Navigation