Skip to main content

Advertisement

Log in

Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro

  • Brief Communication
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Long-term, in vitro propagation of tumor-specific endothelial cells (TEC) allows for functional studies and genome-wide expression profiling of clonally derived, well-characterized subpopulations. Using a genetically engineered mouse model of mammary adenocarcinoma, we have optimized an isolation procedure and defined growth conditions for long-term propagation of mammary TEC. The isolated TEC maintain their endothelial specification and phenotype in culture. Furthermore, gene expression profiling of multiple TEC subpopulations revealed striking, persistent overexpression of several candidate genes including Irx2 and Zfp503 (transcription factors), Alcam and Cd133 (cell surface markers), Ccl4 and neurotensin (Nts) (angiocrine factors), and Gpr182 and Cnr2 (G protein-coupled receptors). Taken together, we have developed an effective method for isolating and culture-expanding mammary TEC, and uncovered several new TEC-selective genes whose overexpression persists even after long-term in vitro culture. These results suggest that the tumor microenvironment may induce changes in vascular endothelium in vivo that are stably transmittable in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Nolan DJ, Ginsberg M, Israely E et al (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–219. doi:10.1016/j.devcel.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  2. Aird WC (2009) Molecular heterogeneity of tumor endothelium. Cell Tissue Res 335:271–281. doi:10.1007/s00441-008-0672-y

    Article  CAS  PubMed  Google Scholar 

  3. Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2:a006536. doi:10.1101/cshperspect.a006536

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ghosh K, Thodeti CK, Dudley AC et al (2008) Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci 105:11305–11310. doi:10.1073/pnas.0800835105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dudley AC, Khan ZA, Shih S-C et al (2008) Calcification of multipotent prostate tumor endothelium. Cancer Cell 14:201–211. doi:10.1016/j.ccr.2008.06.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dudley AC, Udagawa T, Melero-Martin JM et al (2010) Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors. Blood 116:3367–3371. doi:10.1182/blood-2010-02-271122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429. doi:10.1101/cshperspect.a006429

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lacorre D-A, Baekkevold ES, Garrido I et al (2004) Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment. Blood 103:4164–4172. doi:10.1182/blood-2003-10-3537

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Burridge KA, Friedman MH (2008) In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am J Physiol Heart Circ Physiol 295:H1556–H1561. doi:10.1152/ajpheart.0 0540.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Burridge KA, Friedman MH (2010) Environment and vascular bed origin influence differences in endothelial transcriptional profiles of coronary and iliac arteries. Am J Physiol Heart Circ Physiol 299:H837–H846. doi:10.1152/ajpheart.0 0002.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. St Croix B, Rago C, Velculescu V et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  12. Seaman S, Stevens J, Yang MY et al (2007) Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11:539–554. doi:10.1016/j.ccr.2007.04.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68. doi:10.1186/bcr2635

    Article  PubMed Central  PubMed  Google Scholar 

  14. Harrell JC, Pfefferle AD, Zalles N et al (2013) Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis. Clin Exp Metastasis. doi:10.1007/s10585-013-9607-4

    PubMed Central  PubMed  Google Scholar 

  15. Green JE, Shibata MA, Yoshidome K et al (2000) The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19:1020–1027. doi:10.1038/sj.onc.1203280

    Article  CAS  PubMed  Google Scholar 

  16. Voyta JC, Via DP, Butterfield CE, Zetter BR (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 99:2034–2040

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto K, Nishihara S, Kamimura M et al (2004) The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nat Neurosci 7:605–612. doi:10.1038/nn1249

    Article  CAS  PubMed  Google Scholar 

  18. Chang C-W, Tsai C-W, Wang H-F et al (2004) Identification of a developmentally regulated striatum-enriched zinc-finger gene, Nolz-1, in the mammalian brain. Proc Natl Acad Sci USA 101:2613–2618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Klagsbrun M, Eichmann A (2005) A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 16:535–548. doi:10.1016/j.cytogfr.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  20. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631. doi:10.1038/nrc2444

    Article  CAS  PubMed  Google Scholar 

  21. Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10:138–146. doi:10.1038/nrc2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Richardson MR, Yoder MC (2010) Endothelial progenitor cells: Quo Vadis? J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2010.07.009

    PubMed Central  PubMed  Google Scholar 

  23. Cayrol R, Wosik K, Berard JL et al (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9:137–145. doi:10.1038/ni1551

    Article  CAS  PubMed  Google Scholar 

  24. Takase H, Matsumoto K, Yamadera R et al (2012) Genome-wide identification of endothelial cell-enriched genes in the mouse embryo. Blood 120:914–923. doi:10.1182/blood-2011-12-398156

    Article  CAS  PubMed  Google Scholar 

  25. Molica F, Matter CM, Burger F et al (2012) Cannabinoid receptor CB2 protects against balloon-induced neointima formation. Am J Physiol Heart Circ Physiol 302:H1064–H1074. doi:10.1152/ajpheart.0 0444.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rajesh M, Mukhopadhyay P, Bátkai S et al (2007) CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 293:H2210–H2218. doi:10.1152/ajpheart.0 0688.2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175:409–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kim LA, D’Amore PA (2012) A brief history of anti-VEGF for the treatment of ocular angiogenesis. Am J Pathol 181:376–379. doi:10.1016/j.ajpath.2012.06.006

    Article  PubMed  Google Scholar 

  29. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi:10.1038/nature10144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sitohy B, Nagy JA, Dvorak HF (2012) Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 72:1909–1914. doi:10.1158/0008-5472.CAN-11-3406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chaudhary A, Hilton MB, Seaman S et al (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21:212–226. doi:10.1016/j.ccr.2012.01.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

ACD is supported by grants from the National Institute of Health (R00-CA140708) and the University Cancer Research Fund at UNC Chapel Hill. LX is a scholar in the HHMI-funded translational medicine program at UNC Chapel Hill. We would like to thank Mimi Kim and Clayton Davis for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Dudley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Harrell, J.C., Perou, C.M. et al. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis 17, 511–518 (2014). https://doi.org/10.1007/s10456-013-9409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9409-y

Keywords

Navigation