Skip to main content

Advertisement

Log in

Breast tumor cell TACE-shed MCSF promotes pro-angiogenic macrophages through NF-κB signaling

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Most deaths associated with breast cancer, the most common malignancy in women, are caused by metastasis. Tumor associated macrophages significantly contribute to breast cancer progression and development of metastasis through the promotion of angiogenesis which involves a central regulator of macrophage functions: nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Macrophages are activated by macrophage colony stimulating factor (MCSF) and chemokine (C–C motif) ligand 2 (CCL2) to secrete angiogenic factors including vascular endothelial growth factor (VEGF). The release of MCSF from tumor cells is mediated by ectodomain shedding through tumor necrosis factor alpha converting enzyme activation (TACE). Here we determined whether tumor cells TACE-shed MCSF promotes angiogenesis through activation of the NF-κB pathway in macrophages and the subsequent release of VEGF. These interactions were modeled in vitro using a panel of mammary cells mimicking the breast cancer progression from normal murine mammary gland cells to metastatic 4T1 cells along with J774 macrophages, all derived from BALB/c mice. TACE and MCSF expressions were higher in metastatic cells compared to epithelial cells (p < 0.05). Tumor conditioned medias activated the expression of VEGF by macrophages through stimulation of the NF-κB pathway and resulting macrophage secretions that promoted high levels of endothelial cell tubes. Furthermore, the combinations of CCL2, also highly expressed by tumor cells, and MCSF promoted pro-angiogenic macrophages. These results highlight the key role of tumor cell TACE-shed MCSF and secreted CCL2 in stimulating pro-angiogenic macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Howlader N, Ries LA, Mariotto AB, Reichman ME, Ruhl J, Cronin KA (2010) Improved estimates of cancer-specific survival rates from population-based data. J Natl Cancer Inst 102(20):1584–1598. doi:10.1093/jnci/djq366

    Article  PubMed Central  PubMed  Google Scholar 

  2. American Cancer Society (2013) Cancer Facts and Figures 2013. American Cancer Society, Atlanta

    Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  4. Lin EY, Pollard JW (2004) Macrophages: modulators of breast cancer progression. Novartis Found Symp 256:158–168 discussion 168–172, 259–169

    Article  CAS  PubMed  Google Scholar 

  5. Kelly PM, Davison RS, Bliss E, McGee JO (1988) Macrophages in human breast disease: a quantitative immunohistochemical study. Br J Cancer 57(2):174–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4):344–346. doi:10.1016/j.immuni.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  7. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84(3):623–630. doi:10.1189/jlb.1107762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166. doi:10.1172/JCI31422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Arribas J, Esselens C (2009) ADAM17 as a therapeutic target in multiple diseases. Curr Pharm Des 15(20):2319–2335

    Article  CAS  PubMed  Google Scholar 

  10. Kenny PA, Bissell MJ (2007) Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 117(2):337–345. doi:10.1172/JCI29518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Horiuchi K, Miyamoto T, Takaishi H, Hakozaki A, Kosaki N, Miyauchi Y, Furukawa M, Takito J, Kaneko H, Matsuzaki K, Morioka H, Blobel CP, Toyama Y (2007) Cell surface colony-stimulating factor 1 can be cleaved by TNF-α converting enzyme or endocytosed in a clathrin-dependent manner. J Immunol 179(10):6715–6724

    Article  CAS  PubMed  Google Scholar 

  12. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385(6618):729–733. doi:10.1038/385729a0

    Article  CAS  PubMed  Google Scholar 

  13. Lee DC, Sunnarborg SW, Hinkle CL, Myers TJ, Stevenson MY, Russell WE, Castner BJ, Gerhart MJ, Paxton RJ, Black RA, Chang A, Jackson LF (2003) TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase. Ann N Y Acad Sci 995:22–38

    Article  CAS  PubMed  Google Scholar 

  14. Tsakadze NL, Sithu SD, Sen U, English WR, Murphy G, D’Souza SE (2006) Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 281(6):3157–3164. doi:10.1074/jbc.M510797200

    Article  CAS  PubMed  Google Scholar 

  15. Dovas A, Patsialou A, Harney AS, Condeelis J, Cox D (2012) Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J Microsc. doi:10.1111/j.1365-2818.2012.03667.x

    PubMed Central  PubMed  Google Scholar 

  16. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. doi:10.1038/nature10138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J (2013) Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res 73(2):662–671. doi:10.1158/0008-5472.CAN-12-0653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  19. Kluger HM, Dolled-Filhart M, Rodov S, Kacinski BM, Camp RL, Rimm DL (2004) Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis. Clin Cancer Res 10(1 Pt 1):173–177

    Article  CAS  PubMed  Google Scholar 

  20. Scholl SM, Lidereau R, de la Rochefordiere A, Le-Nir CC, Mosseri V, Nogues C, Pouillart P, Stanley FR (1996) Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study. Breast Cancer Res Treat 39(3):275–283

    Article  CAS  PubMed  Google Scholar 

  21. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656. doi:10.1158/0008-5472.CAN-06-1823

    Article  CAS  PubMed  Google Scholar 

  22. Curry JM, Eubank TD, Roberts RD, Wang Y, Pore N, Maity A, Marsh CB (2008) M-CSF signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo. PLoS ONE 3(10):e3405. doi:10.1371/journal.pone.0003405

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246. doi:10.1158/0008-5472.CAN-06-1278

    Article  CAS  PubMed  Google Scholar 

  24. McDougall SR, Anderson AR, Chaplain MA (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–589. doi:10.1016/j.jtbi.2005.12.022

    Article  PubMed  Google Scholar 

  25. Weigand M, Hantel P, Kreienberg R, Waltenberger J (2005) Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8(3):197–204. doi:10.1007/s10456-005-9010-0

    Article  CAS  PubMed  Google Scholar 

  26. Rugo HS (2004) Bevacizumab in the treatment of breast cancer: rationale and current data. Oncologist 9(Suppl 1):43–49

    Article  CAS  PubMed  Google Scholar 

  27. Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist 12(3):356–361. doi:10.1634/theoncologist.12-3-356

    Article  CAS  PubMed  Google Scholar 

  28. Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V, O’Neill V, Rugo HS (2011) RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 29(32):4286–4293. doi:10.1200/JCO.2010.34.1255

    Article  CAS  PubMed  Google Scholar 

  29. Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E (2003) VEGF expression in human macrophages is NF-κB-dependent: studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2. J Cell Sci 116(Pt 4):665–674

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Mo X, Piper MG, Wang H, Parinandi NL, Guttridge D, Marsh CB (2011) M-CSF induces monocyte survival by activating NF-κB p65 phosphorylation at Ser276 via protein kinase C. PLoS ONE 6(12):e28081. doi:10.1371/journal.pone.0028081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12(8):695–708. doi:10.1038/ni.2065

    Article  CAS  PubMed  Google Scholar 

  32. Wang G, Chen C, Yang R, Cao X, Lai S, Luo X, Feng Y, Xia X, Gong J, Hu J (2013) p55PIK-PI3K stimulates angiogenesis in colorectal cancer cell by activating NF-κB pathway. Angiogenesis. doi:10.1007/s10456-013-9336-y

    Google Scholar 

  33. Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436. doi:10.1038/nature04870

    Article  CAS  PubMed  Google Scholar 

  34. Maxson S, Burg KJ (2008) Conditioned media cause increases in select osteogenic and adipogenic differentiation markers in mesenchymal stem cell cultures. J Tissue Eng Regen Med 2(2–3):147–154. doi:10.1002/term.76

    Article  CAS  PubMed  Google Scholar 

  35. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Swamydas M, Nguyen D, Allen LD, Eddy J, Dreau D (2011) Progranulin stimulated by LPA promotes the migration of aggressive breast cancer cells. Cell Commun Adhes 18(6):119–130. doi:10.3109/15419061.2011.641042

    Article  CAS  PubMed  Google Scholar 

  37. Rego SL, Swamydas M, Kidiyoor A, Helms R, De Piante A, Lance AL, Mukherjee P, Dreau D (2013) Soluble tumor necrosis factor receptors shed by breast tumor cells inhibit macrophage chemotaxis. J Interferon Cytokine Res. doi:10.1089/jir.2013.0009

    PubMed  Google Scholar 

  38. Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5(4):628–635. doi:10.1038/nprot.2010.6

    Article  CAS  PubMed  Google Scholar 

  39. Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12(3):267–274. doi:10.1007/s10456-009-9146-4

    Article  PubMed  Google Scholar 

  40. Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192(2):150–158. doi:10.1002/1096-9896(2000)9999:9999<:AID-PATH687>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  41. Lance A, Yang CC, Swamydas M, Dean D, Deitch S, Burg KJ, Dreau D (2013) Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions. J Tissue Eng Regen Med. doi:10.1002/term.1675

    PubMed  Google Scholar 

  42. Swamydas M, Eddy JM, Burg KJ, Dreau D (2010) Matrix compositions and the development of breast acini and ducts in 3D cultures. Vitro Cell Dev Biol Anim 46(8):673–684. doi:10.1007/s11626-010-9323-1

    Article  CAS  Google Scholar 

  43. Lin CW, Shen SC, Ko CH, Lin HY, Chen YC (2010) Reciprocal activation of macrophages and breast carcinoma cells by nitric oxide and colony-stimulating factor-1. Carcinogenesis 31(12):2039–2048. doi:10.1093/carcin/bgq172

    Article  CAS  PubMed  Google Scholar 

  44. Bohrer LR, Schwertfeger KL (2012) Macrophages promote fibroblast growth factor receptor-driven tumor cell migration and invasion in a CXCR2-dependent manner. Mol Cancer Res 10(10):1294–1305. doi:10.1158/1541-7786.MCR-12-0275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Bingle L, Lewis CE, Corke KP, Reed MW, Brown NJ (2006) Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer 94(1):101–107. doi:10.1038/sj.bjc.6602901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566

    Article  CAS  PubMed  Google Scholar 

  47. McGowan PM, Ryan BM, Hill AD, McDermott E, O’Higgins N, Duffy MJ (2007) ADAM-17 expression in breast cancer correlates with variables of tumor progression. Clin Cancer Res 13(8):2335–2343. doi:10.1158/1078-0432.CCR-06-2092

    Article  CAS  PubMed  Google Scholar 

  48. Trad A, Riese M, Shomali M, Hedeman N, Effenberger T, Grotzinger J, Lorenzen I (2013) The disintegrin domain of ADAM17 antagonises fibroblastcarcinoma cell interactions. Int J Oncol 42(5):1793–1800. doi:10.3892/ijo 2013.1864

    CAS  PubMed  Google Scholar 

  49. Zheng Y, Schlondorff J, Blobel CP (2002) Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem 277(45):42463–42470. doi:10.1074/jbc.M207459200

    Article  CAS  PubMed  Google Scholar 

  50. Beck AH, Espinosa I, Edris B, Li R, Montgomery K, Zhu S, Varma S, Marinelli RJ, van de Rijn M, West RB (2009) The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res 15(3):778–787. doi:10.1158/1078-0432.CCR-08-1283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544. doi:10.1038/nri2356

    Article  CAS  PubMed  Google Scholar 

  52. Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB (2003) M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol 171(5):2637–2643

    Article  CAS  PubMed  Google Scholar 

  53. Biswas SK, Lewis CE (2010) NF-κB as a central regulator of macrophage function in tumors. J Leukoc Biol 88(5):877–884. doi:10.1189/jlb.0310153

    Article  CAS  PubMed  Google Scholar 

  54. Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE (2009) Regulation of macrophage function in tumors: the multifaceted role of NF-κB. Blood 113(14):3139–3146. doi:10.1182/blood-2008-12-172825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759. doi:10.1038/nri1703

    Article  CAS  PubMed  Google Scholar 

  56. Gray MJ, Poljakovic M, Kepka-Lenhart D, Morris SM Jr (2005) Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPβ. Gene 353(1):98–106. doi:10.1016/j.gene.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  57. Salcedo R, Resau JH, Halverson D, Hudson EA, Dambach M, Powell D, Wasserman K, Oppenheim JJ (2000) Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J 14(13):2055–2064. doi:10.1096/fj.99-0963com

    Article  CAS  PubMed  Google Scholar 

  58. Varney ML, Olsen KJ, Mosley RL, Singh RK (2005) Paracrine regulation of vascular endothelial growth factor—a expression during macrophage-melanoma cell interaction: role of monocyte chemotactic protein-1 and macrophage colony-stimulating factor. J Interferon Cytokine Res 25(11):674–683. doi:10.1089/jir.2005.25.674

    Article  CAS  PubMed  Google Scholar 

  59. Kim KB, Sosman JA, Fruehauf JP, Linette GP, Markovic SN, McDermott DF, Weber JS, Nguyen H, Cheverton P, Chen D, Peterson AC, Carson WE 3rd, O’Day SJ (2012) BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. J Clin Oncol 30(1):34–41. doi:10.1200/JCO.2011.34.6270

    Article  CAS  PubMed  Google Scholar 

  60. Rego SL, Helms RS, Dréau D (2013) Tumor necrosis factor-alpha-converting enzyme activities and tumor-associated macrophages in breast cancer. Immunol Res. doi: 10.1007/s12026-013-8434-7

Download references

Acknowledgments

We would like to thank Amritha Kidiyoor for her diligent review of this manuscript. This work was supported by grants from the Department of Defense (Era of Hope program # BC044778) and the National Science Foundation (EFRI program # CBE0736007).

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dréau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rego, S.L., Helms, R.S. & Dréau, D. Breast tumor cell TACE-shed MCSF promotes pro-angiogenic macrophages through NF-κB signaling. Angiogenesis 17, 573–585 (2014). https://doi.org/10.1007/s10456-013-9405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9405-2

Keywords

Navigation