Skip to main content

Advertisement

Log in

Vascular endothelial growth factor-C enhances radiosensitivity of lymphatic endothelial cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Radiation therapy after lymph node dissection increases the risk of developing painful and incurable lymphedema in breast cancer patients. Lymphedema occurs when lymphatic vessels become unable to maintain proper fluid balance. The sensitivity of lymphatic endothelial cells (LECs) to ionizing radiation has not been reported to date. Here, the radiosensitivity of LECs in vitro has been determined using clonogenic survival assays. The ability of various growth factors to alter LEC radiosensitivity was also examined. Vascular endothelial growth factor (VEGF)-C enhanced radiosensitivity when LECs were treated prior to radiation. VEGF-C-treated LECs exhibited higher levels of entry into the cell cycle at the time of radiation, with a greater number of cells in the S and G2/M phases. These LECs showed higher levels of γH2A.X—an indicator of DNA damage—after radiation. VEGF-C did not increase cell death as a result of radiation. Instead, it increased the relative number of quiescent LECs. These data suggest that abundant VEGF-C or lymphangiogenesis may predispose patients to radiation-induced lymphedema by impairing lymphatic vessel repair through induction of LEC quiescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Warren AG et al (2007) Lymphedema: a comprehensive review. Ann Plast Surg 59(4):464–472

    Article  PubMed  CAS  Google Scholar 

  2. Meek AG (1998) Breast radiotherapy and lymphedema. Cancer 83(12 Suppl American):2788–2797

    Google Scholar 

  3. Hinrichs CS et al (2004) Lymphedema secondary to postmastectomy radiation: incidence and risk factors. Ann Surg Oncol 11(6):573–580

    Article  PubMed  Google Scholar 

  4. Tammela T et al (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13(12):1458–1466

    Article  PubMed  CAS  Google Scholar 

  5. Gershenwald JE, Fidler IJ (2002) Targeting lymphatic metastasis. Science 296(5574):1811–1812

    Article  PubMed  CAS  Google Scholar 

  6. Gorski DH et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14):3374–3378

    PubMed  CAS  Google Scholar 

  7. Gupta VK et al (2002) Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 8(1):47–54

    Article  PubMed  Google Scholar 

  8. Karkkainen MJ et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80

    Article  PubMed  CAS  Google Scholar 

  9. Avraham T et al (2010) Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-beta1-mediated tissue fibrosis. Am J Physiol Cell Physiol 299(3):C589–C605

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Jackowski S et al (2007) Radiogenic lymphangiogenesis in the skin. Am J Pathol 171(1):338–348

    Article  PubMed Central  PubMed  Google Scholar 

  11. McMahon AM et al (1994) The effects of radiation on the contractile activity of guinea pig mesenteric lymphatics. Lymphology 27(4):193–200

    PubMed  CAS  Google Scholar 

  12. Mortimer PS et al (1991) Time-related changes in lymphatic clearance in pig skin after a single dose of 18 Gy of X rays. Br J Radiol 64(768):1140–1146

    Article  PubMed  CAS  Google Scholar 

  13. Sung HK et al (2006) Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis. Biochem Biophys Res Commun 345(2):545–551

    Article  PubMed  CAS  Google Scholar 

  14. Ch’ang HJ et al (2005) ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11(5):484–490

    Article  PubMed  CAS  Google Scholar 

  15. Nagy JA et al (2002) VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 67:227–237

    Article  PubMed  CAS  Google Scholar 

  16. Joukov V et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15(7):1751

    PubMed  CAS  Google Scholar 

  17. Kukk E et al (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122(12):3829–3837

    PubMed  CAS  Google Scholar 

  18. Kubo H et al (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99(13):8868–8873

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Franken NA et al (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319

    Article  PubMed  CAS  Google Scholar 

  20. Makinen T et al (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20(17):4762–4773

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Rhee JG, Lee I, Song CW (1986) The clonogenic response of bovine aortic endothelial cells in culture to radiation. Radiat Res 106(2):182–189

    Article  PubMed  CAS  Google Scholar 

  22. Cho MM et al (1999) Estrogen modulates paracellular permeability of human endothelial cells by eNOS- and iNOS-related mechanisms. Am J Physiol 276(2 Pt 1):C337–C349

    PubMed  CAS  Google Scholar 

  23. Abdollahi A et al (2003) SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63(13):3755–3763

    PubMed  CAS  Google Scholar 

  24. Paull TT et al (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10(15):886–895

    Article  PubMed  CAS  Google Scholar 

  25. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322

    Article  PubMed  CAS  Google Scholar 

  26. Donker M et al (2007) Negligible radiation protection of endothelial cells by vascular endothelial growth factor. Oncol Rep 18(3):709–714

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH R00CA137167, NIH DP2OD008780 and NCI Federal Share/MGH Proton Beam Income on C06 CA059267. We would like to thank Dr. Rakesh Jain, Dr. Brian Seed, Dr. Dai Fukumura, Dr. Jay Loeffler, Nicole Magpayo and members of the Edwin L. Steele Laboratories for helpful discussions. We would also like to thank Dr. David Schoenfeld and Harvard Catalyst Biostatistical Consulting.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Padera.

Additional information

Cristina T. Kesler and Angera H. Kuo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesler, C.T., Kuo, A.H., Wong, HK. et al. Vascular endothelial growth factor-C enhances radiosensitivity of lymphatic endothelial cells. Angiogenesis 17, 419–427 (2014). https://doi.org/10.1007/s10456-013-9400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9400-7

Keywords

Navigation