Skip to main content

Advertisement

Log in

Dendritic cells regulate angiogenesis associated with liver fibrogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

During liver fibrogenesis the immune response and angiogenesis process are fine-tuned resulting in activation of hepatic stellate cells that produce an excess of extracellular matrix proteins. Dendritic cells (DC) play a central role modulating the liver immunity and have recently been implicated to favour fibrosis regression; although their ability to influence the development of fibrogenesis is unknown. Therefore, we explored whether the depletion of DC during early stages of liver injury has an impact in the development of fibrogenesis. Using the CD11c.DTR transgenic mice, DC were depleted in two experimental models of fibrosis in vivo. The effect of anti-angiogenic therapy was tested during early stages of liver fibrogenesis. DC depletion accelerates the development of fibrosis and as a consequence, the angiogenesis process is boosted. We observed up-regulation of pro-angiogenic factors together with an enhanced vascular endothelial growth factor (VEGF) bioavailability, mainly evidenced by the decrease of anti-angiogenic VEGF receptor 1 (also known as sFlt-1) levels. Interestingly, fibrogenesis process enhanced the expression of Flt-1 on hepatic DC and administration of sFlt-1 was sufficient to abrogate the acceleration of fibrogenesis upon DC depletion. Thus, DC emerge as novel players during the development of liver fibrosis regulating the angiogenesis process and thereby influencing fibrogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134(6):1655–1669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115(1):56–65

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Stauffer JK, Scarzello AJ, Jiang Q, Wiltrout RH (2012) Chronic inflammation, immune escape, and oncogenesis in the liver: a unique neighborhood for novel intersections. Hepatology 56(4):1567–1574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Park O, Jeong WI, Wang L, Wang H, Lian ZX, Gershwin ME, Gao B (2009) Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 49(5):1683–1694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Safadi R, Ohta M, Alvarez CE, Fiel MI, Bansal M, Mehal WZ, Friedman SL (2004) Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 127(3):870–882

    Article  CAS  PubMed  Google Scholar 

  8. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130(2):435–452

    Article  CAS  PubMed  Google Scholar 

  9. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426

    Article  CAS  PubMed  Google Scholar 

  11. Bleier JI, Katz SC, Chaudhry UI, Pillarisetty VG, Kingham TP 3rd, Shah AB, Raab JR, DeMatteo RP (2006) Biliary obstruction selectively expands and activates liver myeloid dendritic cells. J Immunol 176(12):7189–7195

    CAS  PubMed  Google Scholar 

  12. Natarajan S, Thomson AW (2010) Tolerogenic dendritic cells and myeloid-derived suppressor cells: potential for regulation and therapy of liver auto- and alloimmunity. Immunobiology 215(9–10):698–703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Watanabe T, Katsukura H, Chiba T, Kita T, Wakatsuki Y (2007) Periportal and sinusoidal liver dendritic cells suppressing T helper type 1-mediated hepatitis. Gut 56(10):1445–1451

    Article  CAS  PubMed  Google Scholar 

  14. Connolly MK, Bedrosian AS, Mallen-St Clair J, Mitchell AP, Ibrahim J, Stroud A, Pachter HL, Bar-Sagi D, Frey AB, Miller G (2009) In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest 119(11):3213–3225

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, Ginhoux F, Vivier E, Friedman SL, Merad M, Aloman C (2012) Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 55(1):244–255

    Article  PubMed Central  PubMed  Google Scholar 

  16. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C, Rosmorduc O (2002) Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 35(5):1010–1021

    Article  CAS  PubMed  Google Scholar 

  17. Rosmorduc O, Wendum D, Corpechot C, Galy B, Sebbagh N, Raleigh J, Housset C, Poupon R (1999) Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol 155(4):1065–1073

    Article  CAS  PubMed  Google Scholar 

  18. Yu C, Wang F, Jin C, Huang X, Miller DL, Basilico C, McKeehan WL (2003) Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis. Am J Pathol 163(4):1653–1662

    Article  CAS  PubMed  Google Scholar 

  19. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, Wu Y, Yanase K, Namisaki T, Yamazaki M, Tsujinoue H, Imazu H, Masaki T, Fukui H (2003) Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 52(9):1347–1354

    Article  CAS  PubMed  Google Scholar 

  21. Fainaru O, Almog N, Yung CW, Nakai K, Montoya-Zavala M, Abdollahi A, D’Amato R, Ingber DE (2010) Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells. FASEB J 24(5):1411–1418

    Article  CAS  PubMed  Google Scholar 

  22. Sozzani S, Rusnati M, Riboldi E, Mitola S, Presta M (2007) Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol 28(9):385–392

    Article  CAS  PubMed  Google Scholar 

  23. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA (2002) In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17(2):211–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, Ramachandran P, Van Deemter M, Hume DA, Iredale JP, Forbes SJ (2011) Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53(6):2003–2015

    Article  CAS  PubMed  Google Scholar 

  25. Alaniz L, Rizzo M, Malvicini M, Jaunarena J, Avella D, Atorrasagasti C, Aquino JB, Garcia M, Matar P, Silva M, Mazzolini G (2009) Low molecular weight hyaluronan inhibits colorectal carcinoma growth by decreasing tumor cell proliferation and stimulating immune response. Cancer Lett 278(1):9–16

    Article  CAS  PubMed  Google Scholar 

  26. Laskarin G, Kammerer U, Rukavina D, Thomson AW, Fernandez N, Blois SM (2007) Antigen-presenting cells and materno-fetal tolerance: an emerging role for dendritic cells. Am J Reprod Immunol 58(3):255–267

    Article  CAS  PubMed  Google Scholar 

  27. Webster B, Ekland EH, Agle LM, Chyou S, Ruggieri R, Lu TT (2006) Regulation of lymph node vascular growth by dendritic cells. J Exp Med 203(8):1903–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M, Wei S, Zou L, Kryczek I, Hoyle G, Lackner A, Carmeliet P, Zou W (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64(16):5535–5538

    Article  CAS  PubMed  Google Scholar 

  29. Conejo-Garcia JR, Benencia F, Courreges MC, Kang E, Mohamed-Hadley A, Buckanovich RJ, Holtz DO, Jenkins A, Na H, Zhang L, Wagner DS, Katsaros D, Caroll R, Coukos G (2004) Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10(9):950–958

    Article  CAS  PubMed  Google Scholar 

  30. Fainaru O, Adini A, Benny O, Adini I, Short S, Bazinet L, Nakai K, Pravda E, Hornstein MD, D’Amato RJ, Folkman J (2008) Dendritic cells support angiogenesis and promote lesion growth in a murine model of endometriosis. FASEB J 22(2):522–529

    Article  CAS  PubMed  Google Scholar 

  31. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189

    Article  CAS  PubMed  Google Scholar 

  32. Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A, Kalluri R (2003) Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278(15):12605–12608

    Article  CAS  PubMed  Google Scholar 

  33. Mahasreshti PJ, Kataram M, Wang MH, Stockard CR, Grizzle WE, Carey D, Siegal GP, Haisma HJ, Alvarez RD, Curiel DT (2003) Intravenous delivery of adenovirus-mediated soluble FLT-1 results in liver toxicity. Clin Cancer Res 9(7):2701–2710

    CAS  PubMed  Google Scholar 

  34. Sahin H, Borkham-Kamphorst E, Kuppe C, Zaldivar MM, Grouls C, Al-samman M, Nellen A, Schmitz P, Heinrichs D, Berres ML, Doleschel D, Scholten D, Weiskirchen R, Moeller MJ, Kiessling F, Trautwein C, Wasmuth HE (2012) Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in mice. Hepatology 55(5):1610–1619

    Article  CAS  PubMed  Google Scholar 

  35. Lee JS, Semela D, Iredale J, Shah VH (2007) Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology 45(3):817–825

    Article  CAS  PubMed  Google Scholar 

  36. Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, Kodama Y, Miura K, Ikai I, Uemoto S, Brenner DA (2008) Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135(5):1729–1738

    Article  CAS  PubMed  Google Scholar 

  37. Sanz-Cameno P, Trapero-Marugan M, Chaparro M, Jones EA, Moreno-Otero R (2010) Angiogenesis: from chronic liver inflammation to hepatocellular carcinoma. J Oncol 2010:272170

    Article  PubMed Central  PubMed  Google Scholar 

  38. Wald O, Pappo O, Safadi R, Dagan-Berger M, Beider K, Wald H, Franitza S, Weiss I, Avniel S, Boaz P, Hanna J, Zamir G, Eid A, Mandelboim O, Spengler U, Galun E, Peled A (2004) Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. Eur J Immunol 34(4):1164–1174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support of their work by the bilateral cooperation project #01DN1207 between Ministerio de Ciencia y Tecnología (MICYT, Argentina) and Bundesministerium für Bildung und Forschung-Deutschen Zentrum für Luft und Raumfahrt (BMBF-DLR, Germany) to S.M.B. and M.G.G. This work was supported in part by research grants from Charité Stiftung to S.M.B. and Agencia Nacional de Promoción Científica y Tecnológica PICT#2010 to G.M. and M.G.G. F.P. was recipient of a short-scholarship from the German Academic Exchange Program (DAAD), N.F. is supported by Charité Doctoral-Stipendium and I.T.-G. by the Charité Habilitation-Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra M. Blois or Guillermo Mazzolini.

Additional information

Flavia Piccioni and Nancy Freitag have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blois, S.M., Piccioni, F., Freitag, N. et al. Dendritic cells regulate angiogenesis associated with liver fibrogenesis. Angiogenesis 17, 119–128 (2014). https://doi.org/10.1007/s10456-013-9382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9382-5

Keywords

Navigation