Skip to main content

Advertisement

Log in

Topical secretoneurin gene therapy accelerates diabetic wound healing by interaction between heparan-sulfate proteoglycans and basic FGF

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Diabetic foot ulcers represent a therapeutic problem of high clinical relevance. Reduced vascular supply, neuropathy and diminished expression of growth factors strongly contribute to wound healing impairment in diabetes. Secretoneurin, an angiogenic neuropeptide, has been shown to improve tissue perfusion in different animal models by increasing the amount of vessels in affected areas. Therefore, topical secretoneurin gene therapy was tested in a full thickness wound healing model in diabetic db/db mice. Secretoneurin significantly accelerated wound closure in these mice and immunohistochemistry revealed higher capillary and arteriole density in the wounded area compared to control mice. In-vitro, the mechanism of action of secretoneurin on human dermal microvascular endothelial cells was evaluated in normal and diabetic cells. Secretoneurin shows positive effects on in vitro angiogenesis, proliferation and apoptosis of these cells in a basic fibroblast growth factor dependent manner. A small molecular weight inhibitor revealed fibroblast growth factor receptor 3 as the main receptor for secretoneurin mediated effects. Additionally, we could identify heparan-sulfates as important co-factor of secretoneurin induced binding of basic fibroblast growth factor to human dermal endothelial cells. We suggest topical secretoneurin plasmid therapy as new tool for delayed wound healing in patients suffering from diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  2. Ramsey SD, Newton K, Blough D, McCulloch DK, Sandhu N, Reiber GE, Wagner EH (1999) Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care 22(3):382–387

    Article  CAS  PubMed  Google Scholar 

  3. Galkowska H, Wojewodzka U, Olszewski WL (2006) Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen 14(5):558–565

    Article  PubMed  Google Scholar 

  4. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366(9498):1736–1743

    Article  PubMed  Google Scholar 

  5. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947

    Article  CAS  PubMed  Google Scholar 

  6. Abaci A, Oğuzhan A, Kahraman S, Eryol NK, Unal S, Arinç H, Ergin A (1999) Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99(17):2239–2242

    Article  CAS  PubMed  Google Scholar 

  7. Liechty KW, Nesbit M, Herlyn M, Radu A, Adzick NS, Crombleholme TM (1999) Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. J Invest Dermatol 113(3):375–383

    Article  CAS  PubMed  Google Scholar 

  8. Badillo AT, Chung S, Zhang L, Zoltick P, Lie Ritter T, Lehmann M, Volk HD (2002) Improvements in gene therapy: averting the immune response to adenoviral vectors. BioDrugs 16(1):3–10

    Article  Google Scholar 

  9. Ritter T, Lehmann M, Volk HD (2002) Improvements in gene therapy: averting the immune response to adenoviral vectors. BioDrugs 16(1):3–10

    Article  CAS  PubMed  Google Scholar 

  10. Badillo AT, Chung S, Zhang L, Zoltick P, Liechty KW (2007) Lentiviral gene transfer of SDF-1alpha to wounds improves diabetic wound healing. J Surg Res 143(1):35–42

    Article  CAS  PubMed  Google Scholar 

  11. Deodato B, Arsic N, Zentilin L, Galeano M, Santoro D, Torre V, Altavilla D, Valdembri D, Bussolino F, Squadrito F, Giacca M (2002) Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther 9(12):777–785

    Article  CAS  PubMed  Google Scholar 

  12. Kirchmair R, Gander R, Egger M, Hanley A, Silver M, Ritsch A, Murayama T, Kaneider N, Sturm W, Kearny M, Fischer-Colbrie R, Kircher B, Gaenzer H, Wiedermann CJ, Ropper AH, Losordo DW, Patsch JR, Schratzberger P (2004) The neuropeptide secretoneurin acts as a direct angiogenic cytokine in vitro and in vivo. Circulation 109:777–783

    Article  CAS  PubMed  Google Scholar 

  13. Schgoer W, Theurl M, Jeschke J, Beer AG, Albrecht K, Gander R, Rong S, Vasiljevic D, Egger M, Wolf AM, Frauscher S, Koller B, Tancevski I, Patsch JR, Schratzberger P, Piza-Katzer H, Ritsch A, Bahlmann FH, Fischer-Colbrie R, Wolf D, Kirchmair R (2009) Gene therapy with the angiogenic cytokine secretoneurin induces therapeutic angiogenesis by a nitric oxide-dependent mechanism. Circ Res 105:994–1002

    Article  CAS  PubMed  Google Scholar 

  14. Albrecht-Schgoer K, Schgoer W, Holfeld J, Theurl M, Wiedemann D, Steger C, Gupta R, Semsroth S, Fischer-Colbrie R, Beer AG, Stanzl U, Huber E, Misener S, Dejaco D, Kishore R, Pachinger O, Grimm M, Bonaros N, Kirchmair R (2012) The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation 126(21):2491–2501

    Article  CAS  PubMed  Google Scholar 

  15. Sheetz MJ, King GL (2002) Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 288(20):2579–2588

    Article  CAS  PubMed  Google Scholar 

  16. Hansen SL, Myers CA, Charboneau A, Young DM, Boudreau N (2003) HoxD3 accelerates wound healing in diabetic mice. A J Pathol 163:2421–2431

    Article  CAS  Google Scholar 

  17. Yates CC, Whaley D, Kulasekeran P, Hancock WW, Lu B, Bodnar R, Newsome J, Hebda PA, Wells A (2007) Delayed and deficient dermal maturation in mice lacking the CXCR3 ELR-negative CXC chemokine receptor. Am J Pathol 171(2):484–495

    Article  CAS  PubMed  Google Scholar 

  18. Soulié P, Héroult M, Bernard I, Kerros ME, Milhiet PE, Delbé J, Barritault D, Caruelle D, Courty J (2002) Immunoassay for measuring the heparin-binding growth factors HARP and MK in biological fluids. J Immunoassay Immunochem 23(1):33–48

    Article  PubMed  Google Scholar 

  19. Miyake M, Ishii M, Koyama N, Kawashima K, Kodama T, Anai S, Fujimoto K, Hirao Y, Sugano K (2010) 1-tert-butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino)-pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a selective tyrosine kinase inhibitor of fibroblast growth factor receptor-3 (FGFR3), inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27/Kip1 and G1/G0 arrest. J Pharmacol Exp Ther 332(3):795–802

    Article  CAS  PubMed  Google Scholar 

  20. Trudel S, Ely S, Farooqi Y, Affer M, Robbiani DF, Chesi M, Bergsagel PL (2004) Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 103(9):3521–3528

    Article  CAS  PubMed  Google Scholar 

  21. Dong J, Takami Y, Tanaka H, Yamaguchi R, Jingping G, Chun Q, Shuliang L, Shimazaki S, Ogo K (2004) Protective effects of a free radical scavenger, MCI-186, on high-glucose-induced dysfunction of human dermal microvascular endothelial cells. Wound Repair Regen 12(6):607–612

    Article  PubMed  Google Scholar 

  22. Egger M, Schgoer W, Beer AG, Jeschke J, Leierer J, Theurl M, Frauscher S, Tepper OM, Niederwanger A, Ritsch A, Kearney M, Wanschitz J, Gurtner GC, Fischer-Colbrie R, Weiss G, Piza-Katzer H, Losordo DW, Patsch JR, Schratzberger P, Kirchmair R (2007) Hypoxia up-regulates the angiogenic cytokine secretoneurin via an HIF-1alpha- and basic FGF-dependent pathway in muscle cells. FASEB J 21:2906–2917

    Article  CAS  PubMed  Google Scholar 

  23. Cianfarani F, Zambruno G, Brogelli L, Sera F, Lacal PM, Pesce M, Capogrossi MC, Failla CM, Napolitano M, Odorisio T (2006) Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. Am J Pathol 169(4):1167–1182

    Article  CAS  PubMed  Google Scholar 

  24. Moulin V, Lawny F, Barritault D, Caruelle JP (1998) Platelet releasate treatment improves skin healing in diabetic rats through endogenous growth factor secretion. Cell Mol Biol (Noisy-le-grand) 44(6):961–971

    CAS  Google Scholar 

  25. Werner S, Breeden M, Hübner G, Greenhalgh DG, Longaker MT (1994) Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. J Invest Dermatol 103(4):469–473

    Article  CAS  PubMed  Google Scholar 

  26. Chen TT, Luque A, Lee S, Anderson SM, Segura T, Iruela-Arispe ML (2010) Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol 188(4):595–609

    Article  CAS  PubMed  Google Scholar 

  27. Richard JL, Parer-Richard C, Daures JP, Clouet S, Vannereau D, Bringer J, Rodier M, Jacob C, Comte-Bardonnet M (1995) Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot. A pilot, randomized, double-blind, placebo-controlled study. Diabetes Care 18(1):64–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Birgit Moser from the Department of Dermatology and Venereology at the Medical University of Innsbruck for help with immunohistochemical analysis.

Ethical standards

All experiments within this manuscript comply with the current laws of Austria.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Kirchmair.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5392 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht-Schgoer, K., Schgoer, W., Theurl, M. et al. Topical secretoneurin gene therapy accelerates diabetic wound healing by interaction between heparan-sulfate proteoglycans and basic FGF. Angiogenesis 17, 27–36 (2014). https://doi.org/10.1007/s10456-013-9375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9375-4

Keywords

Navigation