Skip to main content
Log in

Toll-like receptor 3 regulates cord blood-derived endothelial cell function in vitro and in vivo

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Circulating endothelial progenitor cells (cEPC) are capable of homing to neovascularisation sites, in which they proliferate and differentiate into endothelial cells. Transplantation of cEPC-derived cells, in particular those isolated from umbilical cord blood (UCB), has emerged as a promising approach in the treatment of cardio-vascular diseases. After in vivo transplantation, these cells may be exposed to local or systemic inflammation or pathogens, of which they are a common target. Because Toll-like receptors (TLR) are critical in detecting pathogens and in initiating inflammatory responses, we hypothesized that TLR may govern UCB cEPC-derived cells function. While these cells expressed almost all TLR, we found that only TLR3 dramatically impaired cell properties. TLR3 activation inhibited cell proliferation, modified cell cycle entry, impaired the in vitro angiogenic properties and induced pro-inflammatory cytokines production. The anti-angiogenic effect of TLR3 activation was confirmed in vivo in a hind-limb ischemic mice model. Moreover, TLR3 activation consistently leads to an upregulation of miR-29b, -146a and -155 and to a deregulation of cytoskeleton and cell cycle regulator. Hence, TLR3 activation is likely to be a key regulator of cEPC-derived cells properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  2. Peichev M, Naiyer AJ, Pereira D et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  3. Vasa M, Fichtlscherer S, Aicher A et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7

    Article  PubMed  CAS  Google Scholar 

  4. Heiss C, Keymel S, Niesler U et al (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448

    Article  PubMed  CAS  Google Scholar 

  5. Umemura T, Soga J, Hidaka T et al (2008) Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens 21:1203–1209

    Article  PubMed  CAS  Google Scholar 

  6. Shi Q, Rafii S, Wu MH et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    PubMed  CAS  Google Scholar 

  7. Kawamoto A, Gwon HC, Iwaguro H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    Article  PubMed  CAS  Google Scholar 

  8. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    Article  PubMed  CAS  Google Scholar 

  9. Lavergne M, Vanneaux V, Delmau C et al (2011) Cord blood-circulating endothelial progenitors for treatment of vascular diseases. Cell Prolif 44(Suppl 1):44–47

    Article  PubMed  Google Scholar 

  10. Erbs S, Linke A, Adams V et al (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97:756–762

    Article  PubMed  CAS  Google Scholar 

  11. Murohara T, Ikeda H, Duan J et al (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105:1527–1536

    Article  PubMed  CAS  Google Scholar 

  12. Bompais H, Chagraoui J, Canron X et al (2004) Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103:2577–2584

    Article  PubMed  CAS  Google Scholar 

  13. Ingram DA, Mead LE, Tanaka H et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  PubMed  CAS  Google Scholar 

  14. Au P, Daheron LM, Duda DG et al (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111:1302–1305

    Article  PubMed  CAS  Google Scholar 

  15. Geisbert TW, Young HA, Jahrling PB et al (2003) Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 163:2371–2382

    Article  PubMed  CAS  Google Scholar 

  16. Jiang Z, Tang X, Xiao R et al (2007) Dengue virus regulates the expression of hemostasis-related molecules in human vein endothelial cells. J Infect 55:e23–e28

    Article  PubMed  Google Scholar 

  17. Hoebe K, Janssen E, Beutler B (2004) The interface between innate and adaptive immunity. Nat Immunol 5:971–974

    Article  PubMed  CAS  Google Scholar 

  18. Nagai Y, Garrett KP, Ohta S et al (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24:801–812

    Article  PubMed  CAS  Google Scholar 

  19. Mempel M, Voelcker V, Kollisch G et al (2003) Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 121:1389–1396

    Article  PubMed  CAS  Google Scholar 

  20. Pevsner-Fischer M, Morad V, Cohen-Sfady M et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109:1422–1432

    Article  PubMed  CAS  Google Scholar 

  21. van den Berk LC, Jansen BJ, Siebers-Vermeulen KG et al (2009) Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med 13:3415–3426

    Article  PubMed  Google Scholar 

  22. Hwa Cho H, Bae YC, Jung JS (2006) Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells 24:2744–2752

    Article  PubMed  Google Scholar 

  23. Sioud M, Floisand Y, Forfang L et al (2006) Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Mol Biol 364:945–954

    Article  PubMed  CAS  Google Scholar 

  24. De Luca K, Frances-Duvert V, Asensio MJ et al (2009) The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 23:2063–2074

    Article  PubMed  Google Scholar 

  25. Baldridge MT, King KY, Goodell MA (2011) Inflammatory signals regulate hematopoietic stem cells. Trends Immunol 32:57–65

    Article  PubMed  CAS  Google Scholar 

  26. Zimmer S, Steinmetz M, Asdonk T et al (2011) Activation of endothelial toll-like receptor 3 impairs endothelial function. Circ Res 108:1358–1366

    Article  PubMed  CAS  Google Scholar 

  27. Sato Y, Rifkin DB (1988) Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol 107:1199–1205

    Article  PubMed  CAS  Google Scholar 

  28. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  PubMed  CAS  Google Scholar 

  29. Huang SP, Wu MS, Wang HP et al (2002) Correlation between serum levels of interleukin-6 and vascular endothelial growth factor in gastric carcinoma. J Gastroenterol Hepatol 17:1165–1169

    Article  PubMed  CAS  Google Scholar 

  30. Mizukami Y, Jo WS, Duerr EM et al (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11:992–997

    PubMed  CAS  Google Scholar 

  31. Li A, Varney ML, Valasek J et al (2005) Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8:63–71

    Article  PubMed  CAS  Google Scholar 

  32. Huang Y, Shen XJ, Zou Q et al (2011) Biological functions of microRNAs: a review. J Physiol Biochem 67:129–139

    Article  PubMed  CAS  Google Scholar 

  33. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  PubMed  Google Scholar 

  34. Tauseef M, Knezevic N, Chava KR et al (2012) TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. J Exp Med 209:1953–1968

    Article  PubMed  CAS  Google Scholar 

  35. Schindler K, Davydenko O, Fram B et al (2012) Maternally recruited Aurora C kinase is more stable than Aurora B to support mouse oocyte maturation and early development. Proc Natl Acad Sci USA 109:E2215–E2222

    Article  PubMed  CAS  Google Scholar 

  36. Ewald SE, Lee BL, Lau L et al (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662

    Article  PubMed  CAS  Google Scholar 

  37. Pegu A, Qin S, Fallert Junecko BA et al (2008) Human lymphatic endothelial cells express multiple functional TLRs. J Immunol 180:3399–3405

    PubMed  CAS  Google Scholar 

  38. Fitzner N, Clauberg S, Essmann F et al (2008) Human skin endothelial cells can express all 10 TLR genes and respond to respective ligands. Clin Vaccine Immunol 15:138–146

    Article  PubMed  CAS  Google Scholar 

  39. Lundberg AM, Drexler SK, Monaco C et al (2007) Key differences in TLR3/poly I:C signaling and cytokine induction by human primary cells: a phenomenon absent from murine cell systems. Blood 110:3245–3252

    Article  PubMed  CAS  Google Scholar 

  40. Salaun B, Coste I, Rissoan MC et al (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176:4894–4901

    PubMed  CAS  Google Scholar 

  41. Paone A, Galli R, Gabellini C et al (2010) Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1 alpha. Neoplasia 12:539–549

    PubMed  CAS  Google Scholar 

  42. Taura M, Eguma A, Suico MA et al (2008) p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol Cell Biol 28:6557–6567

    Article  PubMed  CAS  Google Scholar 

  43. Yang M, Xiao Z, Lv Q et al (2011) The functional expression of TLR3 in EPCs impairs cell proliferation by induction of cell apoptosis and cell cycle progress inhibition. Int Immunopharmacol 11:2118–2124

    PubMed  CAS  Google Scholar 

  44. Kaiser WJ, Kaufman JL, Offermann MK (2004) IFN-alpha sensitizes human umbilical vein endothelial cells to apoptosis induced by double-stranded RNA. J Immunol 172:1699–1710

    PubMed  CAS  Google Scholar 

  45. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  46. McCoy CE, Sheedy FJ, Qualls JE et al (2010) IL-10 inhibits miR-155 induction by toll-like receptors. J Biol Chem 285:20492–20498

    Article  PubMed  CAS  Google Scholar 

  47. Taganov KD, Boldin MP, Chang KJ et al (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486

    Article  PubMed  CAS  Google Scholar 

  48. Tang B, Xiao B, Liu Z et al (2010) Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett 584:1481–1486

    Article  PubMed  CAS  Google Scholar 

  49. Hou J, Wang P, Lin L et al (2009) MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183:2150–2158

    Article  PubMed  CAS  Google Scholar 

  50. Poliseno L, Tuccoli A, Mariani L et al (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071

    Article  PubMed  CAS  Google Scholar 

  51. Thai TH, Calado DP, Casola S et al (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608

    Article  PubMed  CAS  Google Scholar 

  52. O’Connell RM, Kahn D, Gibson WS et al (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33:607–619

    Article  PubMed  Google Scholar 

  53. Fu Y, Huang J, Wang KS et al (2011) RNA interference targeting CITRON can significantly inhibit the proliferation of hepatocellular carcinoma cells. Mol Biol Rep 38:693–702

    Article  PubMed  CAS  Google Scholar 

  54. Cho HJ, Baek KE, Park SM et al (2009) RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer. Clin Cancer Res 15:2612–2619

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Agence Nationale de la Recherche (project “Eurocord Lab” no. ANR-07-RIB-005-02).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Vanneaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grelier, A., Cras, A., Balitrand, N. et al. Toll-like receptor 3 regulates cord blood-derived endothelial cell function in vitro and in vivo. Angiogenesis 16, 821–836 (2013). https://doi.org/10.1007/s10456-013-9358-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9358-5

Keywords

Navigation