Skip to main content

Advertisement

Log in

Analysis of PPARα-dependent and PPARα-independent transcript regulation following fenofibrate treatment of human endothelial cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Fenofibrate is a synthetic ligand for the nuclear receptor peroxisome proliferator-activated receptor (PPAR) alpha and has been widely used in the treatment of metabolic disorders, especially hyperlipemia, due to its lipid-lowering effect. The molecular mechanism of lipid-lowering is relatively well defined: an activated PPARα forms a PPAR–RXR heterodimer and this regulates the transcription of genes involved in energy metabolism by binding to PPAR response elements in their promoter regions, so-called “trans-activation”. In addition, fenofibrate also has anti-inflammatory and anti-athrogenic effects in vascular endothelial and smooth muscle cells. We have limited information about the anti-inflammatory mechanism of fenofibrate; however, “trans-repression” which suppresses production of inflammatory cytokines and adhesion molecules probably contributes to this mechanism. Furthermore, there are reports that fenofibrate affects endothelial cells in a PPARα-independent manner. In order to identify PPARα-dependently and PPARα-independently regulated transcripts, we generated microarray data from human endothelial cells treated with fenofibrate, and with and without siRNA-mediated knock-down of PPARα. We also constructed dynamic Bayesian transcriptome networks to reveal PPARα-dependent and -independent pathways. Our transcriptome network analysis identified growth differentiation factor 15 (GDF15) as a hub gene having PPARα-independently regulated transcripts as its direct downstream children. This result suggests that GDF15 may be PPARα-independent master-regulator of fenofibrate action in human endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  1. Lefebvre P, Chinetti G, Fruchart JC, Staels B (2006) Sorting out the roles of PPARα in energy metabolism and vascular homeostasis. J Clin Invest 116:571–580. doi:10.1172/JCI27989

    Article  PubMed  CAS  Google Scholar 

  2. Gervois P, Fruchart JC, Staels B (2007) Drug insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab 3:145–156. doi:10.1038/ncpendmet0397

    Article  PubMed  CAS  Google Scholar 

  3. Staels B, Maes M, Zambon A (2008) Fibrates and future PPARα agonists in the treatment of cardiovascular disease. Nat Clin Pract Cardiovasc Med 5:542–553. doi:10.1038/ncpcardio1278

    Article  PubMed  CAS  Google Scholar 

  4. Zandbergen F, Plutzky J (2007) PPARα in atherosclerosis and inflammation. Biochim Biophys Acta 1771:972–982

    PubMed  CAS  Google Scholar 

  5. Kim J, Ahn JH, Kim JH, Yu YS, Kim HS, Ha J, Shinn SH, Oh YS (2007) Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Exp Eye Res 84:886–893. doi:10.1016/j.exer.2007.01.009

    Article  PubMed  CAS  Google Scholar 

  6. Murakami H, Murakami R, Kambe F, Cao X, Takahashi R, Asai T, Hirai T, Numaguchi Y, Okumura K, Seo H, Murohara T (2006) Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC. Biochem Biophys Res Commun 341:973–978. doi:10.1016/j.bbrc.2006.01.052

    Article  PubMed  CAS  Google Scholar 

  7. Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones DS, Miyano S, Print C (2007) Understanding endothelial cell apoptosis: what can the transcriptome, glycome and proteome reveal? Philos Trans R Soc Lond B Biol Sci 362:1469–1487. doi:10.1098/rstb.2007.2129

    Article  PubMed  CAS  Google Scholar 

  8. Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43:13348–13356. doi:10.1021/bi048950a

    Article  PubMed  CAS  Google Scholar 

  9. Tamada Y, Araki H, Imoto S, Nagasaki M, Doi A, Nakanishi Y, Tomiyasu Y, Yasuda K, Dunmore B, Sanders D, Humphries S, Print C, Charnock-Jones DS, Sanders D, Tashiro K, Kuhara S, Miyano S (2009) Unraveling dynamic activities of autocrine pathways that control drug-response transcriptome networks. Pac Symp Biocomput 14:251–263

    Google Scholar 

  10. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121. doi:10.1073/pnas.091062498

    Article  PubMed  CAS  Google Scholar 

  11. Gupta PK, Yoshida R, Imoto S, Yamaguchi R, Miyano S (2007) Statistical absolute evaluation of gene ontology terms with gene expression data. Proceedings of the 3rd international symposium on bioinformatics research and applications. Lecture note in Bioinformatics, vol 4463. Springer-Verlag, pp 146–157

  12. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  13. Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75:57–65. doi:10.1016/j.biosystems.2004.03.004

    Article  PubMed  CAS  Google Scholar 

  14. Gervois P, Vu-Dac N, Kleemann R, Kockx M, Dubois G, Laine B, Kosykh V, Fruchart JC, Kooistra T, Staels B (2001) Negative regulation of human fibrinogen gene expression by peroxisome proliferator-activated receptor alpha agonists via inhibition of CCAAT box/enhancer-binding protein beta. J Biol Chem 276:33471–33477. doi:10.1074/jbc.M102839200

    Article  PubMed  CAS  Google Scholar 

  15. Goya K, Sumitani S, Xu X, Kitamura T, Yamamoto H, Kurebayashi S, Saito H, Kouhara H, Kasayama S, Kawase I (2004) Peroxisome proliferator-activated receptor α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 24:658–663. doi:10.1161/01.ATV.0000118682.58708.78

    Article  PubMed  CAS  Google Scholar 

  16. Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnés CM, Fannon M, Laforme AM, Chaponis DM, Folkman J, Kieran MW (2008) PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci USA 105:985–990. doi:10.1073/pnas.0711281105

    Article  PubMed  CAS  Google Scholar 

  17. Sands WA, Martin AF, Strong EW, Palmer TM (2004) Specific inhibition of nuclear factor-kappaB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol Pharmacol 66:1147–1159. doi:10.1124/mol.104.001107

    Article  PubMed  CAS  Google Scholar 

  18. Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, Blaschke F, Graf K, Law RE, Fleck E, Gräfe M (2002) PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 293:1431–1437. doi:10.1016/S0006-291X(02)00385-6

    Article  PubMed  CAS  Google Scholar 

  19. Cooper TF, Morby AP, Gunn A, Schneider D (2006) Effect of random and hub gene disruptions on environmental and mutational robustness in Escherichia coli. BMC Genomics 7:237. doi:10.1186/1471-2164-7-237

    Article  PubMed  Google Scholar 

  20. Zotenko E, Mestre J, O’Leary DP, Przytycka TM (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLOS Comput Biol 4:e1000140. doi:10.1371/journal.pcbi.1000140

    Article  PubMed  Google Scholar 

  21. Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L, Debus J, Peters JM, Friess H, Folkman J, Huber PE (2007) Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 104:12890–12895. doi:10.1073/pnas.0705505104

    Article  PubMed  CAS  Google Scholar 

  22. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390. doi:10.1038/ng1532

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto T, Nishizaki I, Nukada T, Kamegaya E, Furuya S, Hirabayashi Y, Ikeda K, Hata H, Kobayashi H, Sora I, Yamamoto H (2004) Functional identification of ASCT1 neutral amino acid transporter as the predominant system for the uptake of l-serine in rat neurons in primary culture. Neurosci Res 49:101–111. doi:10.1016/j.neures.2004.02.004

    Article  PubMed  CAS  Google Scholar 

  24. Ago T, Sadoshima J (2006) GDF15, a cardioprotective TGF-beta superfamily protein. Circ Res 98:294–297. doi:10.1161/01.RES.0000207919.83894.9d

    Article  PubMed  CAS  Google Scholar 

  25. Ferrari N, Pfeffer U, Dell’Eva R, Ambrosini C, Noonan DM, Albini A (2005) The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl) retinamide. Clin Cancer Res 11:4610–4619. doi:10.1158/1078-0432.CCR-04-2210

    Article  PubMed  CAS  Google Scholar 

  26. Huang CY, Beer TM, Higano CS, True LD, Vessella R, Lange PH, Garzotto M, Nelson PS (2007) Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin Cancer Res 13:5825–5833. doi:10.1158/1078-0432.CCR-07-1037

    Article  PubMed  CAS  Google Scholar 

  27. Lin R, Liu J, Gan W, Yang G (2004) C-reactive protein-induced expression of CD40-CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull 27:1537–1543. doi:10.1248/bpb.27.1537

    Article  PubMed  CAS  Google Scholar 

  28. Martinez JM, Sali T, Okazaki R, Anna C, Hollingshead M, Hose C, Monks A, Walker NJ, Baek SJ, Eling TE (2006) Drug-induced expression of nonsteroidal anti-inflammatory drug-activated gene/macrophage inhibitory cytokine-1/prostate-derived factor, a putative tumor suppressor, inhibits tumor growth. J Pharmacol Exp Ther 318:899–906. doi:10.1124/jpet.105.100081

    Article  PubMed  CAS  Google Scholar 

  29. Holland CM, Saidi SA, Evans AL, Sharkey AM, Latimer JA, Crawford RA, Charnock-Jones DS, Print C, Smith SK (2004) Transcriptome analysis of endometrial cancer identifies peroxisome proliferator-activated receptors as potential therapeutic targets. Mol Cancer Ther 3:993–1001

    PubMed  CAS  Google Scholar 

  30. Baek SJ, Kim JS, Nixon JB, DiAugustine RP, Eling TE (2004) Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem 279:6883–6892. doi:10.1074/jbc.M305295200

    Article  PubMed  CAS  Google Scholar 

  31. Chintharlapalli S, Papineni S, Baek SJ, Liu S, Safe S (2005) 1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol Pharmacol 68:1782–1792

    PubMed  CAS  Google Scholar 

  32. Yamaguchi K, Lee SH, Eling TE, Baek SJ (2006) A novel peroxisome proliferator-activated receptor gamma ligand, MCC-555, induces apoptosis via posttranscriptional regulation of NAG-1 in colorectal cancer cells. Mol Cancer Ther 5:1352–1361. doi:10.1158/1535-7163.MCT-05-0528

    Article  PubMed  CAS  Google Scholar 

  33. Baek SJ, Wilson LC, Hsi LC, Eling TE (2003) Troglitazone, a peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand, selectively induces the early growth response-1 gene independently of PPAR gamma. A novel mechanism for its anti-tumorigenic activity. J Biol Chem 278:5845–5853. doi:10.1074/jbc.M208394200

    Article  PubMed  CAS  Google Scholar 

  34. Duhaney TA, Cui L, Rude MK, Lebrasseur NK, Ngoy S, De Silva DS, Siwik DA, Liao R, Sam F (2007) Peroxisome proliferator-activated receptor alpha-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload. Hypertension 49:1084–1094. doi:10.1161/HYPERTENSIONAHA.107.086926

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two reviewers for their constructive comments and suggestions. Computation time was provided by the Super Computer System, Human Genome Center, Institute of Medical Science, University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Araki.

Additional information

Hiromitsu Araki, Yoshinori Tamada and Seiya Imoto equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 450 kb)

(XLS 451 kb)

(XLS 451 kb)

(XLS 451 kb)

(XLS 450 kb)

(XLS 27 kb)

(TXT 2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, H., Tamada, Y., Imoto, S. et al. Analysis of PPARα-dependent and PPARα-independent transcript regulation following fenofibrate treatment of human endothelial cells. Angiogenesis 12, 221–229 (2009). https://doi.org/10.1007/s10456-009-9142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9142-8

Keywords

Navigation