Skip to main content

Advertisement

Log in

Novel function of the thyroid hormone analog tetraiodothyroacetic acid: a cancer chemosensitizing and anti-cancer agent

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Previous studies from our laboratory have demonstrated that thyroid hormones play a key role in cancer progression. In addition, a deaminated form, tetraiodothyroacetic acid (tetrac), that antagonizes the proliferative action of these hormones was found to possess anti-cancer functions through its ability to inhibit cellular proliferation and angiogenesis. The present study was undertaken to investigate whether tetrac could also suppress the development of drug resistance, known as a causative factor of disease relapse. Tetrac was shown to enhance cellular response in vitro to doxorubicin, etoposide, cisplatin, and trichostatin A in resistant tumor cell lines derived from neuroblastoma, osteosarcoma, and breast cancer. The mechanism of action of tetrac did not involve expression of classical drug resistance genes. However, radiolabeled doxorubicin uptake in cells was enhanced by tetrac, suggesting that one or more export mechanisms for chemotherapeutic agents are inhibited. Tetrac was also found to enhance cellular susceptibility to senescence and apoptosis, suggesting that the agent may target multiple drug resistance mechanisms. Tetrac has previously been shown to inhibit tumor cell proliferation in vitro. In vivo studies reported here revealed that tetrac in a pulsed-dose regimen was effective in suppressing the growth of a doxorubicin-resistant human breast tumor in the nude mouse. In this paradigm, doxorubicin-sensitivity was not restored, indicating that (1) the in vitro restoration of drug sensitivity by tetrac may not correlate with in vivo resistance phenomena and (2) tetrac is an effective chemotherapeutic agent in doxorubicin-resistant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boelaert K, Franklin JA (2005) Thyroid hormone in health and disease. J Endorinol 187:1–15

    Article  CAS  Google Scholar 

  2. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26:704–728

    Article  PubMed  CAS  Google Scholar 

  3. Bernal J (2005) Thyroid hormones and brain development. Vitam Horm 71:95–122

    Article  PubMed  CAS  Google Scholar 

  4. Zimmermann-Belsing T, Brabant G, Holst JJ et al (2003) Circulating leptin and thyroid dysfunction. Eur J Endocrinol 149:257–271

    Article  PubMed  CAS  Google Scholar 

  5. Tang HY, Lin HY, Zhang S et al (2004) Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145:3265–3272

    Article  PubMed  CAS  Google Scholar 

  6. Davis FB, Tang HY, Shih A et al (2006) Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 66:7270–7275

    Article  PubMed  CAS  Google Scholar 

  7. Lin HY, Tang HY, Shih A et al (2007) Thyroid hormone is a MAPK-dependent growth factor for thyroid cancer cells and is anti-apoptotic. Steroids 72:180–187

    Article  PubMed  CAS  Google Scholar 

  8. Bergh JJ, Lin HY, Lansing L et al (2005) Integrin avβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  PubMed  CAS  Google Scholar 

  9. Davis PJ, Davis FB, Cody V (2005) Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab 16:429–435

    Article  PubMed  CAS  Google Scholar 

  10. Furuya F, Ying H, Zhao L et al (2007) Novel functions of thyroid hormone receptor mutants: beyond nucleus-initiated transcription. Steroids 72:171–179

    Article  PubMed  CAS  Google Scholar 

  11. Hercbergs AA, Goyal LK, Suh JH et al (2003) Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: a Phase I/II study. Anticancer Res 23:617–626

    PubMed  CAS  Google Scholar 

  12. Cristofanilli M, Yamamura Y, Kau SW et al (2007) Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma. Cancer 103:1122–1128

    Article  CAS  Google Scholar 

  13. Mousa SA, Davis FB, Mohamed S et al (2006) Pro-angiogenesis action of thyroid hormone and analogs in a three-dimensional in vitro microvascular endothelial sprouting model. Int Angiol 25:407–413

    PubMed  CAS  Google Scholar 

  14. Davis FB, Mousa SA, O’Connor L et al (2004) Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 94:1500–1506

    Article  PubMed  CAS  Google Scholar 

  15. Mousa SA, O’Connor LJ, Bergh JJ et al (2006) The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol 46:356–360

    Article  Google Scholar 

  16. Bandyopadhyay D, Mishra A, Medrano EE (2004) Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-dependent mechanism. Cancer Res 64:7708–7710

    Google Scholar 

  17. Shannon KM (2002) Resistance in the land of molecular cancer therapeutics. Cancer Cell 2:99–102

    Article  PubMed  CAS  Google Scholar 

  18. Biedler JL (1994) Drug resistance: genotype versus phenotype–Thirty-second G. H. A. Clowes Memorial Award Lecture. Cancer Res 54:666–678

    PubMed  CAS  Google Scholar 

  19. Moscow JA, Cowan KH (1988) Multidrug resistance. J Natl Cancer Inst 80:14–20

    Article  PubMed  CAS  Google Scholar 

  20. Gottesman MM, Hrycyna CA, Schoenlein PV et al (1995) Genetic analysis of the multidrug transporter. Annu Rev Genet 29:607–649

    Article  PubMed  CAS  Google Scholar 

  21. O’Connor R (2007) The pharmacology of cancer resistance. Anticancer Res 27:1267–1272

    PubMed  CAS  Google Scholar 

  22. D’Arezzo S, Incerpi S, Davis FB et al (2004) Rapid nongenomic effects of 3.5, 3’-triiodo-L-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145:5694–5703

    Article  PubMed  CAS  Google Scholar 

  23. Lin HY, Davis FB, Gordinier JK et al (1999) Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am J Physiol 276:C1014–C1024

    PubMed  CAS  Google Scholar 

  24. Shih A, Lin HY, Davis FB et al (2001) Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry 40:2870–2878

    Article  PubMed  CAS  Google Scholar 

  25. Munir S, Xu G, Yang B et al (2004) Nodal and ALK7 inhibit proliferation and induce apoptosis in human trophoblast cells. J Biol Chem 279:31277–31286

    Article  PubMed  CAS  Google Scholar 

  26. Mitin T, Von Moltke LL, Court MH et al (2004) Levothyroxine up-regulates P-glycoprotein independent of the pregnane X receptor. Drug Metab Dispos 32:779–782

    Article  PubMed  CAS  Google Scholar 

  27. Matsunaga T, Kose E, Yasuda S et al (2006) Determination of p-glycoprotein ATPase activity using luciferase. Biol Pharm Bull 29:560–564

    Article  PubMed  CAS  Google Scholar 

  28. Mitchell AM, Tom M, Mortimer RH (2005) Thyroid hormone export from cells: contribution of P-glycoprotein. J Endocrinol 185:93–98

    Article  PubMed  CAS  Google Scholar 

  29. Rebbaa A, Chou PM, Mirkin BL (2001) Factors secreted by human neuroblastoma mediated doxorubicin resistance by activating STAT3 and inhibiting apoptosis. Mol Med 7:393–400

    PubMed  CAS  Google Scholar 

  30. Rebbaa A, Zheng X, Chou PM et al (2003) Caspase inhibition switches doxorubicin-induced apoptosis to senescence. Oncogene 22:2805–2811

    Article  PubMed  CAS  Google Scholar 

  31. Schmitt CA, Fridman JS, Yang M et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    Article  PubMed  CAS  Google Scholar 

  32. Kahlem P, Dorken B, Schmitt CA (2004) Cellular senescence in cancer treatment: friend or foe? J Clin Invest 113:169–174

    PubMed  CAS  Google Scholar 

  33. Rebbaa A (2005) Targeting senescence pathways to reverse drug resistance in cancer. Cancer Lett 219:1–13

    Article  PubMed  CAS  Google Scholar 

  34. Chang BD, Swift ME, Shen M et al (2002) Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci U S A 99:389–394

    Article  PubMed  CAS  Google Scholar 

  35. Zheng X, Chou PM, Mirkin BL et al (2004) Senescence-initiated reversal of drug resistance: specific role of cathepsin L. Cancer Res 64:1773–1780

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Charitable Leadership Foundation and the Medical Technology Acceleration Program (to SA. Mousa and PJ Davis), the Pharmaceutical Research Institute at Albany College of Pharmacy (to SA. Mousa), and the Children’s Memorial Research Center (to A. Rebbaa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Mousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebbaa, A., Chu, F., Davis, F.B. et al. Novel function of the thyroid hormone analog tetraiodothyroacetic acid: a cancer chemosensitizing and anti-cancer agent. Angiogenesis 11, 269–276 (2008). https://doi.org/10.1007/s10456-008-9110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9110-8

Keywords

Navigation