Skip to main content
Log in

Transcriptome analysis of endothelial cell gene expression induced by growth on matrigel matrices: identification and characterization of MAGP-2 and lumican as novel regulators of angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Remodeling of vascular microenvironments during normal and tumor-induced angiogenesis is an important, yet poorly understood mechanism by which endothelial cells (ECs) contribute to the activation or resolution of angiogenesis. We used microarray analyses to monitor changes in the transcriptome of ECs undergoing angiogenesis when cultured onto Matrigel matrices. This strategy identified 308 genes whose expression in ECs was altered at least 3-fold by angiogenesis, of which 63 genes were found to encode for secretory proteins. In vitro assays that modeled key steps in the angiogenic process showed that several identified genes possessed pro- or anti-angiogenic activities (e.g., SMOC-2, secreted modular calcium-binding protein-2; CRELD-2, cysteine-rich with EGF-like domains-1; MAGP-2, microfibril-associated glycoprotein-2; lumican; and ECM-1, extracellular matrix protein-1). In particular, MAGP-2 expression potentiated EC proliferation and p38 MAPK activation stimulated by the pro-angiogenic factors, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF); it also stimulated EC invasion and angiogenic sprouting, and more importantly, promoted the development and infiltration of vessels into Matrigel plugs implanted into genetically normal mice. Conversely, lumican inhibited EC activation of p38 MAPK, as well as their invasion, angiogenic sprouting, and vessel formation in mice. Collectively, our findings provide new insights into how EC stromal remodeling regulates angiogenesis activation and resolution, as well as identify two novel EC-secreted stromal proteins that modulate angiogenesis both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  2. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  3. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  5. Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 2002:PE7

    Article  PubMed  Google Scholar 

  6. Liotta LA, Kohn EC (2001) The microenvironment of the tumor–host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  7. Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520

    Article  PubMed  CAS  Google Scholar 

  8. Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z (2003) Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 10:136–141

    Article  PubMed  CAS  Google Scholar 

  9. Albig AR, Neil JR, Schiemann WP (2006) Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res 66:2621–2629

    Article  PubMed  CAS  Google Scholar 

  10. Albig AR, Schiemann WP (2004) Fibulin-5 antagonizes vascular endothelial growth factor (VEGF) signaling and angiogenic sprouting by endothelial cells. DNA Cell Biol 23:367–379

    Article  PubMed  CAS  Google Scholar 

  11. Albig AR, Schiemann WP (2005) Identification and characterization of regulator of G protein signaling 4 (RGS4) as a novel inhibitor of tubulogenesis: RGS4 inhibits mitogen-activated protein kinases and vascular endothelial growth factor signaling. Mol Biol Cell 16:609–625

    Article  PubMed  CAS  Google Scholar 

  12. Schenk PM, Baumann S, Mattes R, Steinbiss HH (1995) Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs. Biotechniques 19:196–198, 200

    Google Scholar 

  13. Iruela-Arispe ML, Carpizo D, Luque A (2003) ADAMTS1: a matrix metalloprotease with angioinhibitory properties. Ann NY Acad Sci 995:183–190

    PubMed  CAS  Google Scholar 

  14. Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5:153–165

    Article  PubMed  CAS  Google Scholar 

  15. Gao CF, Vande Woude GF (2005) HGF/SF-Met signaling in tumor progression. Cell Res 15:49–51

    Article  PubMed  Google Scholar 

  16. Armstrong LC, Bornstein P (2003) Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 22:63–71

    Article  PubMed  CAS  Google Scholar 

  17. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9:407–415

    Article  PubMed  CAS  Google Scholar 

  18. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  19. Sottile J (2004) Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta 1654:13–22

    PubMed  CAS  Google Scholar 

  20. Pupa SM, Menard S, Forti S, Tagliabue E (2002) New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192:259–267

    Article  PubMed  CAS  Google Scholar 

  21. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:537–546

    Article  PubMed  Google Scholar 

  22. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    Article  PubMed  CAS  Google Scholar 

  23. Kahn J, Mehraban F, Ingle G, Xin X, Bryant JE, Vehar G, Schoenfeld J, Grimaldi CJ, Peale F, Draksharapu A, Lewin DA, Gerritsen ME (2000) Gene expression profiling in an in vitro model of angiogenesis. Am J Pathol 156:1887–1900

    PubMed  CAS  Google Scholar 

  24. Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, Davis GE (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114:2755–2773

    PubMed  CAS  Google Scholar 

  25. Aitkenhead M, Wang SJ, Nakatsu MN, Mestas J, Heard C, Hughes CC (2002) Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, βig-h3, and NrCAM. Microvasc Res 63:159–171

    Article  PubMed  CAS  Google Scholar 

  26. Sulochana KN, Fan H, Jois S, Subramanian V, Sun F, Kini RM, Ge R (2005) Peptides derived from human decorin leucine-rich repeat 5 inhibit angiogenesis. J Biol Chem 280:27935–27948

    Article  PubMed  CAS  Google Scholar 

  27. Davies Cde L, Melder RJ, Munn LL, Mouta-Carreira C, Jain RK, Boucher Y (2001) Decorin inhibits endothelial migration and tube-like structure formation: role of thrombospondin-1. Microvasc Res 62:26–42

    Article  PubMed  CAS  Google Scholar 

  28. Kao WW, Funderburgh JL, Xia Y, Liu CY, Conrad GW (2006) Focus on molecules: lumican. Exp Eye Res 82:3–4

    Article  PubMed  CAS  Google Scholar 

  29. Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286

    Article  PubMed  CAS  Google Scholar 

  30. Vij N, Roberts L, Joyce S, Chakravarti S (2004) Lumican suppresses cell proliferation and aids Fas-Fas ligand mediated apoptosis: implications in the cornea. Exp Eye Res 78:957–971

    Article  PubMed  CAS  Google Scholar 

  31. Vij N, Roberts L, Joyce S, Chakravarti S (2005) Lumican regulates corneal inflammatory responses by modulating Fas-Fas ligand signaling. Invest Ophthalmol Vis Sci 46:88–95

    Article  PubMed  Google Scholar 

  32. Ping Lu Y, Ishiwata T, Asano G (2002) Lumican expression in alpha cells of islets in pancreas and pancreatic cancer cells. J Pathol 196:324–330

    Article  PubMed  CAS  Google Scholar 

  33. Leygue E, Snell L, Dotzlaw H, Hole K, Hiller-Hitchcock T, Roughley PJ, Watson PH, Murphy LC (1998) Expression of lumican in human breast carcinoma. Cancer Res 58:1348–1352

    PubMed  CAS  Google Scholar 

  34. Naito Z, Ishiwata T, Kurban G, Teduka K, Kawamoto Y, Kawahara K, Sugisaki Y (2002) Expression and accumulation of lumican protein in uterine cervical cancer cells at the periphery of cancer nests. Int J Oncol 20:943–948

    PubMed  CAS  Google Scholar 

  35. Lu YP, Ishiwata T, Kawahara K, Watanabe M, Naito Z, Moriyama Y, Sugisaki Y, Asano G (2002) Expression of lumican in human colorectal cancer cells. Pathol Int 52:519–526

    Article  PubMed  CAS  Google Scholar 

  36. Vuillermoz B, Khoruzhenko A, D’Onofrio MF, Ramont L, Venteo L, Perreau C, Antonicelli F, Maquart FX, Wegrowski Y (2004) The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res 296:294–306

    Article  PubMed  CAS  Google Scholar 

  37. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826

    Article  PubMed  CAS  Google Scholar 

  38. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101:811–816

    Article  PubMed  CAS  Google Scholar 

  39. Chan I (2004) The role of extracellular matrix protein 1 in human skin. Clin Exp Dermatol 29:52–56

    Article  PubMed  CAS  Google Scholar 

  40. Hamada T, McLean WH, Ramsay M, Ashton GH, Nanda A, Jenkins T, Edelstein I, South AP, Bleck O, Wessagowit V, Mallipeddi R, Orchard GE, Wan H, Dopping-Hepenstal PJ, Mellerio JE, Whittock NV, Munro CS, van Steensel MA, Steijlen PM, Ni J, Zhang L, Hashimoto T, Eady RA, McGrath JA (2002) Lipoid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1). Hum Mol Genet 11:833–840

    Article  PubMed  CAS  Google Scholar 

  41. Oyama N, Chan I, Neill SM, Hamada T, South AP, Wessagowit V, Wojnarowska F, D’Cruz D, Hughes GJ, Black MM, McGrath JA (2003) Autoantibodies to extracellular matrix protein 1 in lichen sclerosus. Lancet 362:118–123

    Article  PubMed  CAS  Google Scholar 

  42. Kowalewski C, Kozlowska A, Chan I, Gorska M, Wozniak K, Jablonska S, McGrath JA (2005) Three-dimensional imaging reveals major changes in skin microvasculature in lipoid proteinosis and lichen sclerosus. J Dermatol Sci 38:215–224

    Article  PubMed  Google Scholar 

  43. Wang L, Yu J, Ni J, Xu XM, Wang J, Ning H, Pei XF, Chen J, Yang S, Underhill CB, Liu L, Liekens J, Merregaert J, Zhang L (2003) Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 200:57–67

    Article  PubMed  CAS  Google Scholar 

  44. Kebebew E, Peng M, Reiff E, Duh QY, Clark OH, McMillan A (2005) ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann Surg 242:353–361

    PubMed  Google Scholar 

  45. Han Z, Ni J, Smits P, Underhill CB, Xie B, Chen Y, Liu N, Tylzanowski P, Parmelee D, Feng P, Ding I, Gao F, Gentz R, Huylebroeck D, Merregaert J, Zhang L (2001) Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 15:988–994

    Article  PubMed  CAS  Google Scholar 

  46. Mirancea N, Hausser I, Beck R, Metze D, Fusenig NE, Breitkreutz D (2006) Vascular anomalies in lipoid proteinosis (hyalinosis cutis et mucosae): basement membrane components and ultrastructure. J Dermatol Sci 42:231–239

    Article  PubMed  CAS  Google Scholar 

  47. Rocnik EF, Liu P, Sato K, Walsh K, Vaziri C (2006) The novel SPARC family member SMOC-2 potentiates angiogenic growth factor activity. J Biol Chem 281:22855–22864

    Article  PubMed  CAS  Google Scholar 

  48. Vannahme C, Gosling S, Paulsson M, Maurer P, Hartmann U (2003) Characterization of SMOC-2, a modular extracellular calcium-binding protein. Biochem J 373:805–814

    Article  PubMed  CAS  Google Scholar 

  49. Vannahme C, Smyth N, Miosge N, Gosling S, Frie C, Paulsson M, Maurer P, Hartmann U (2002) Characterization of SMOC-1, a novel modular calcium-binding protein in basement membranes. J Biol Chem 277:37977–37986

    Article  PubMed  CAS  Google Scholar 

  50. Funk SE, Sage EH (1993) Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts. J Cell Physiol 154:53–63

    Article  PubMed  CAS  Google Scholar 

  51. Sage EH, Reed M, Funk SE, Truong T, Steadele M, Puolakkainen P, Maurice DH, Bassuk JA (2003) Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J Biol Chem 278:37849–37857

    Article  PubMed  CAS  Google Scholar 

  52. Kupprion C, Motamed K, Sage EH (1998) SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 273:29635–29640

    Article  PubMed  CAS  Google Scholar 

  53. Jendraschak E, Sage EH (1996) Regulation of angiogenesis by SPARC and angiostatin: implications for tumor cell biology. Semin Cancer Biol 7:139–146

    Article  PubMed  CAS  Google Scholar 

  54. Gibson MA, Finnis ML, Kumaratilake JS, Cleary EG (1998) Microfibril-associated glycoprotein-2 (MAGP-2) is specifically associated with fibrillin-containing microfibrils but exhibits more restricted patterns of tissue localization and developmental expression than its structural relative MAGP-1. J Histochem Cytochem 46:871–886

    PubMed  CAS  Google Scholar 

  55. Gibson MA, Leavesley DI, Ashman LK (1999) Microfibril-associated glycoprotein-2 specifically interacts with a range of bovine and human cell types via αVβ3 integrin. J Biol Chem 274:13060–13065

    Article  PubMed  CAS  Google Scholar 

  56. Lemaire R, Bayle J, Mecham RP, Lafyatis R (2007) Microfibril-associated MAGP-2 stimulates elastic fiber assembly. J Biol Chem PMID 282:800–808

    Article  CAS  Google Scholar 

  57. Lemaire R, Farina G, Kissin E, Shipley JM, Bona C, Korn JH, Lafyatis R (2004) Mutant fibrillin 1 from tight skin mice increases extracellular matrix incorporation of microfibril-associated glycoprotein 2 and type I collagen. Arthritis Rheum 50:915–926

    Article  PubMed  CAS  Google Scholar 

  58. Lemaire R, Korn JH, Shipley JM, Lafyatis R (2005) Increased expression of type I collagen induced by microfibril-associated glycoprotein 2: novel mechanistic insights into the molecular basis of dermal fibrosis in scleroderma. Arthritis Rheum 52:1812–1823

    Article  PubMed  CAS  Google Scholar 

  59. Bodolay E, Koch AE, Kim J, Szegedi G, Szekanecz Z (2002) Angiogenesis and chemokines in rheumatoid arthritis and other systemic inflammatory rheumatic diseases. J Cell Mol Med 6:357–376

    Article  PubMed  CAS  Google Scholar 

  60. Graham JD, Yager ML, Hill HD, Byth K, O’Neill GM, Clarke CL (2005) Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol 19:2713–2735

    Article  PubMed  CAS  Google Scholar 

  61. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA Jr, Marks JR, Dressman HK, West M, Nevins JR (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357

    Article  PubMed  CAS  Google Scholar 

  62. Creighton C, Kuick R, Misek DE, Rickman DS, Brichory FM, Rouillard JM, Omenn GS, Hanash S (2003) Profiling of pathway-specific changes in gene expression following growth of human cancer cell lines transplanted into mice. Genome Biol 4:R46

    Article  PubMed  Google Scholar 

  63. Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE, Goggins M, Hruban RH (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63:8614–8622

    PubMed  CAS  Google Scholar 

  64. Miyamoto A, Lau R, Hein PW, Shipley JM, Weinmaster G (2006) Microfibrillar proteins MAGP-1 and MAGP-2 induce Notch1extracellular domain dissociation and receptor activation. J Biol Chem 281:10089–10097

    Article  PubMed  CAS  Google Scholar 

  65. Nehring LC, Miyamoto A, Hein PW, Weinmaster G, Shipley JM (2005) The extracellular matrix protein MAGP-2 interacts with Jagged1 and induces its shedding from the cell surface. J Biol Chem 280:20349–20355

    Article  PubMed  CAS  Google Scholar 

  66. Leong KG, Karsan A (2006) Recent insights into the role of Notch signaling in tumorigenesis. Blood 107:2223–2233

    Article  PubMed  CAS  Google Scholar 

  67. Alva JA, Iruela-Arispe ML (2004) Notch signaling in vascular morphogenesis. Curr Opin Hematol 11:278–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Members of the Schiemann Laboratory are thanked for critical reading of the manuscript. This research was supported in part by grants from the National Institutes of Health (CA095519) and the Cancer League of Colorado to W.P.S., and by a fellowship from the National Institutes of Health (CA99321) to A.R.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Schiemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2007_9075_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albig, A.R., Roy, T.G., Becenti, D.J. et al. Transcriptome analysis of endothelial cell gene expression induced by growth on matrigel matrices: identification and characterization of MAGP-2 and lumican as novel regulators of angiogenesis. Angiogenesis 10, 197–216 (2007). https://doi.org/10.1007/s10456-007-9075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9075-z

Keywords

Navigation