Skip to main content
Log in

Protein kinase C and downstream signaling pathways in a three-dimensional model of phorbol ester-induced angiogenesis

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis, a critical process in both health and disease, is mediated by a number of signaling pathways. Although proangiogenic stimuli, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and the phorbol ester phorbol-12 myristate-13 acetate (PMA) are known to promote blood vessel formation, their downstream targets are ill defined. We sought to investigate the signaling pathways required for vessel assembly by utilizing a three-dimensional collagen matrix in which human umbilical vein endothelial cells (HUVECs) form tubular structures. Our data show that PMA is sufficient for the induction of angiogenesis, and that protein kinase C (PKC) is necessary for this process. Evaluation of PKC isoforms \(\alpha\) and \(\delta\) revealed that these proteins are uniquely regulated. Characterization of an additional PMA target, protein kinase D (PKD) demonstrated that this enzyme becomes phosphorylated in HUVECs, and may therefore be involved in proangiogenic signaling. Further examination of downstream effectors of PKC showed that extracellular signal-regulated kinase (ERK) is critical for angiogenesis, and is accordingly phosphorylated in response to PMA. Surprisingly however, phosphorylation of ERK is independent of PKC activity. In addition, we show that the PKC target sphingosine kinase (SPK) is required for vessel formation. These findings illustrate the complexities of blood vessel formation, and suggest that activators utilize multiple independent pathways to invoke a complete angiogenic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblast growth factor

BisI:

bisindolylmaleimide I

CalC:

calphostin C

ERK:

extracellular signal-regulated kinase

FBS:

fetal bovine serum

HUVECs:

human umbilical vein endothelial cells

MAPK:

mitogen activated protein kinase

PKC:

protein kinase C

PKD:

protein kinase D

PMA:

phorbol-12-myristate-13-acetate

SPK:

sphingosine kinase

SPKI:

sphingosine kinase inhibitor

S1P:

sphingosine 1-phosphate

VEGF:

vascular endothelial growth factor

References

  1. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–60

    Article  PubMed  CAS  Google Scholar 

  2. Munoz-Chapuli R, Quesada AR, Angel Medina M (2004) Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 61(17):2224–43

    Article  PubMed  CAS  Google Scholar 

  3. Montesano R, Orci L (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42(2):469–77

    Article  PubMed  CAS  Google Scholar 

  4. Davis GE, Camarillo CW (1996)An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224(1):39–51

    Article  PubMed  CAS  Google Scholar 

  5. Ilan N, Mahooti S, Madri JA (1998) Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. Journal of Cell Science 111(24):3621–31

    PubMed  CAS  Google Scholar 

  6. Newton AC (2001) Protein kinase C: Structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 101(8):2353–64

    Article  PubMed  CAS  Google Scholar 

  7. Toker A (1998) Signaling through protein kinase C. Front Biosci 3:D1134–47

    PubMed  CAS  Google Scholar 

  8. Liu WS, Heckman CA (1998) The sevenfold way of PKC regulation. Cell Signal 10(8):529–42

    Article  PubMed  CAS  Google Scholar 

  9. Murakami M, Horowitz A, Tang S et al. (2002) Protein kinase C (PKC) delta regulates PKCalpha activity in a Syndecan-4-dependent manner. J Biol Chem 277(23):20367–71

    Article  PubMed  CAS  Google Scholar 

  10. Wang A, Nomura M, Patan S et al. (2002) Inhibition of protein kinase Calpha prevents endothelial cell migration and vascular tube formation in vitro and myocardial neovascularization in vivo. Circ Res 90(5):609–16

    Article  PubMed  CAS  Google Scholar 

  11. Johnson KR, Becker KP, Facchinetti MM et al. (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate PMA. J Biol Chem 277(38):35257–62

    Article  PubMed  CAS  Google Scholar 

  12. Nakade Y, Banno Y, K TK et al. (2003) Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1. Biochim Biophys Acta 1635(2–3):104–16

    PubMed  CAS  Google Scholar 

  13. Lee OH, Kim YM, Lee YM et al. (1999) Sphingosine 1-phosphate induces angiogenesis: Its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 264(3):743–50

    Article  PubMed  CAS  Google Scholar 

  14. Argraves KM, Wilkerson BA, Argraves WS, et al. Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis. J Biol Chem 2004; 279(48): 50580–90

    Google Scholar 

  15. Bayless KJ, Davis GE (2003) Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun 312(4):903–13

    Article  PubMed  CAS  Google Scholar 

  16. Waeber C, Blondeau N, Salomone S (2004) Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect 17(6):365–82

    Article  PubMed  CAS  Google Scholar 

  17. Payne SG, Milstien S, Spiegel S (2002) Sphingosine-1-phosphate: Dual messenger functions. FEBS Lett 531(1):54–7

    Article  PubMed  CAS  Google Scholar 

  18. Yang B, Cao DJ, Sainz I et al. (2004) Different roles of ERK and p38 MAP kinases during tube formation from endothelial cells cultured in 3-dimensional collagen matrices. J Cell Physiol 200(3):360–9

    Article  PubMed  CAS  Google Scholar 

  19. Beckner ME (1999) Factors promoting tumor angiogenesis. Cancer Invest 17(8):594–623

    PubMed  CAS  Google Scholar 

  20. Zachary I (2003) VEGF signalling: Integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 31(Pt 6):1171–7

    Article  PubMed  CAS  Google Scholar 

  21. Pintucci G, Moscatelli D, Saponara F et al. (2002) Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. Faseb J 16(6):598–600

    PubMed  CAS  Google Scholar 

  22. Kuzuya M, Satake S, Ramos MA et al. (1999) Induction of apoptotic cell death in vascular endothelial cells cultured in three-dimensional collagen lattice. Exp Cell Res 248(2):498–508

    Article  PubMed  CAS  Google Scholar 

  23. Kuriyama M, Taniguchi T, Shirai Y et al. (2004) Activation and translocation of PKCdelta is necessary for VEGF-induced ERK activation through KDR in HEK293T cells. Biochem Biophys Res Commun 325(3):843–51

    Article  PubMed  CAS  Google Scholar 

  24. Wong C, Jin ZG. Protein kinase Calpha-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by VEGF. J Biol Chem 2005; 280(39): 33262–9

    Google Scholar 

  25. Koike T, Vernon RB, Gooden MD et al. (2003) Inhibited angiogenesis in aging: A role for TIMP-2. J Gerontol A Biol Sci Med Sci 58(9):B798–805

    PubMed  Google Scholar 

  26. Harlow E (1999) Using Antibodies: A Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour NY

    Google Scholar 

  27. Bell SE, Mavila A, Salazar R et al. (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: Regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114(Pt 15):2755–73

    PubMed  CAS  Google Scholar 

  28. Montesano R, Orci L (1987) Phorbol esters induce angiogenesis in vitro from large-vessel endothelial cells. J Cell Physiol 130(2):284–91

    Article  PubMed  CAS  Google Scholar 

  29. Nicholson DW, Ali A, Thornberry NA et al. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376(6535):37–43

    Article  PubMed  CAS  Google Scholar 

  30. Bayless KJ, Davis GE (2004) Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol Chem 279(12):11686–95

    Article  PubMed  CAS  Google Scholar 

  31. Ono Y, Fujii T, Igarashi K et al. (1989) Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc Natl Acad Sci USA 86(13):4868–71

    Article  PubMed  CAS  Google Scholar 

  32. Gliki G, Wheeler-Jones C, Zachary I (2002) Vascular endothelial growth factor induces protein kinase C (PKC)-dependent Akt/PKB activation and phosphatidylinositol 3′-kinase-mediates PKC delta phosphorylation: role of PKC in angiogenesis. Cell Biol Int 26(9):751–9

    Article  PubMed  CAS  Google Scholar 

  33. Tsopanoglou NE, Pipili-Synetos E, Maragoudakis ME (1993) Protein kinase C involvement in the regulation of angiogenesis. J Vasc Res 30(4):202–8

    PubMed  CAS  Google Scholar 

  34. Tsopanoglou NE, Haralabopoulos GC, Maragoudakis ME (1994) Opposing effects on modulation of angiogenesis by protein kinase C and cAMP-mediated pathways. J Vasc Res 31(4):195–204

    PubMed  CAS  Google Scholar 

  35. Harrington EO, Loffler J, Nelson PR, et al. (1997) Enhancement of migration by protein kinase Calpha and inhibition of proliferation and cell cycle progression by protein kinase Cdelta in capillary endothelial cells. J Biol Chem 272(11):7390–7

    Article  PubMed  CAS  Google Scholar 

  36. Ren S, Shatadal S, Shen GX (2000) Protein kinase C-beta mediates lipoprotein-induced generation of PAI-1 from vascular endothelial cells. Am J Physiol Endocrinol Metab 278(4):E656–62

    PubMed  CAS  Google Scholar 

  37. Stempka L, Girod A, Muller HJ et al. (1997) Phosphorylation of protein kinase Cdelta (PKCdelta) at threonine 505 is not a prerequisite for enzymatic activity. Expression of rat PKCdelta and an alanine 505 mutant in bacteria in a functional form. J Biol Chem 272(10):6805–11

    Article  PubMed  CAS  Google Scholar 

  38. Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5(3):214

    Article  PubMed  Google Scholar 

  39. Hug H, Sarre TF (1993) Protein kinase C isoenzymes: Divergence in signal transduction? Biochem J 291 (Pt 2):329–43

    PubMed  CAS  Google Scholar 

  40. Ron D, Kazanietz MG (1999) New insights into the regulation of protein kinase C and novel phorbol ester receptors. Faseb J 13(13):1658–76

    PubMed  CAS  Google Scholar 

  41. Kazanietz MG (2002) Novel “nonkinase” phorbol ester receptors: The C1 domain connection. Mol Pharmacol 61(4):759–67

    Article  PubMed  CAS  Google Scholar 

  42. Rykx A, De Kimpe L, Mikhalap S et al. (2003) Protein kinase D: A family affair. FEBS Lett 546(1):81–6

    Article  PubMed  CAS  Google Scholar 

  43. Brose N, Rosenmund C (2002) Move over protein kinase C, you’ve got company: Alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 115(Pt 23):4399–411

    Article  PubMed  CAS  Google Scholar 

  44. Iglesias T, Waldron RT, Rozengurt E (1998) Identification of in vivo phosphorylation sites required for protein kinase D activation. J Biol Chem 273(42):27662–7

    Article  PubMed  CAS  Google Scholar 

  45. Matthews SA, Rozengurt E, Cantrell D (1999) Characterization of serine 916 as an in vivo autophosphorylation site for protein kinase D/Protein kinase Cmu. J Biol Chem 274(37):26543–9

    Article  PubMed  CAS  Google Scholar 

  46. Rozengurt E, Rey O, Waldron RT (2005) Protein kinase D signaling. J Biol Chem 280(14):13205–8

    Article  PubMed  CAS  Google Scholar 

  47. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365(6446):557–60

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka K, Abe M, Sato Y (1999) Roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res 90(6):647–54

    PubMed  CAS  Google Scholar 

  49. Bullard LE, Qi X, Penn JS (2003) Role for extracellular signal-responsive kinase-1 and −2 in retinal angiogenesis. Invest Ophthalmol Vis Sci 44(4):1722–31

    Article  PubMed  Google Scholar 

  50. Dudley DT, Pang L, Decker SJ et al. (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92(17):7686–9

    Article  PubMed  CAS  Google Scholar 

  51. Davies SP, Reddy H, Caivano M et al. (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1):95–105

    Article  PubMed  CAS  Google Scholar 

  52. Favata MF, Horiuchi KY, Manos EJ et al. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273(29):18623–32

    Article  PubMed  CAS  Google Scholar 

  53. Verin AD, Liu F, Bogatcheva N et al. (2000) Role of ras-dependent ERK activation in phorbol ester-induced endothelial cell barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 279(2):L360–70

    PubMed  CAS  Google Scholar 

  54. Pitson SM, Moretti PA, Zebol JR et al. (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. Embo J 22(20):5491–500

    Article  PubMed  CAS  Google Scholar 

  55. Shu X, Wu W, Mosteller RD et al. (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22(22):7758–68

    Article  PubMed  CAS  Google Scholar 

  56. Binetruy-Tournaire R, Demangel C, Malavaud B et al. (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. Embo J 19(7):1525–33

    Article  PubMed  CAS  Google Scholar 

  57. Ferrara N (2004) Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev 25(4):581–611

    Article  PubMed  CAS  Google Scholar 

  58. Lee S, Jilani SM, Nikolova GV et al. (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681–91

    Article  PubMed  CAS  Google Scholar 

  59. Maceyka M, Payne SG, Milstien S et al. (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585(2–3):193–201

    PubMed  CAS  Google Scholar 

  60. Limaye V, Li X, Hahn C et al. (2005) Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3K/Akt and regulation of Bcl-2 family members. Blood 105(8):3169–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Robert Vernon for invaluable advice on tube assays. We also wish to thank David Fulton for providing caveolin and phospho p44/p42 MAP kinase antibodies, Mario Marrero for providing the cleaved caspase-3 antibody and Katina Corley for technical assistance. This work was supported in part␣by grants from the Georgia Cancer Coalition␣(GCC00023) and National Institute of Health (K01-CA089689) to K.M. and American Heart Association (AHA00063) and Georgia Cancer Coalition (GCC00022) to B.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Lilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, C.J., Motamed, K. & Lilly, B. Protein kinase C and downstream signaling pathways in a three-dimensional model of phorbol ester-induced angiogenesis. Angiogenesis 9, 39–51 (2006). https://doi.org/10.1007/s10456-006-9028-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-006-9028-y

Keywords

Navigation