Skip to main content
Log in

Airborne pollen of Olea europaea L. in Tetouan (NW Morocco): heat requirements and forecasts

  • OriginalPaper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The northwest of Morocco is one of the major areas dedicated to olive tree crop in Morocco. Airborne pollen of Olea was recorded during 2008–2012 to determine its annual load and variation. Aerobiological sampling was undertaken over five seasons in Tétouan using the volumetric method. This study used also a thermal model to calculate growing degree-days required until the start of the pollen season and the peak day. For this purpose, a range of the threshold temperatures between 0 and 10 °C was tested. The pollen season started from the second decade of March and showed the highest pollen index in May or April. The annual pollen score recorded varied from year to year between 4,168 and 1,953. The main pollen season lasted 62–105 days, with peak days occurring in April or May; the highest concentration reached 379 pollen grains/m3. The sum of the difference between mean temperature and threshold temperatures of 10 and 7 °C from 51 and 61 days before the season start and peak day accumulated averages heat units of 278 and 624 growing degree days, respectively. In order to validate the forecast of these parameters of the pollen season, we have used the year 2012 as external data. The dates predicted did not differ from those observed when threshold temperatures 10 and 7 °C were tested to forecast the onset of the Olea pollen season and the full anthesis, respectively. The method performed in this study showed a high coincidence between expected and observed data and should be useful to allow olive crop yield management in the area of Tetouan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboulaich, N., Trigo, M. M., Bouziane, H., Cabezudo, B., Recio, M., El Kadiri, M., et al. (2013). Variations and origin of the atmospheric pollen of Cannabis detected in the province of Tetouan (NW Morocco): 2008–2010. Sciences of Total Environment, 443, 413–419.

    Article  CAS  Google Scholar 

  • Aguilera, F., Ruiz, L., Fornaciari, M., Romano, B., Galán, C., Oteros, J., et al. (2014). Heat accumulation period in the Mediterranean region: Phenological response of the olive in different climate areas (Spain, Italy and Tunisia). International Journal of Biometeorology, 58(5), 867–876.

    Article  Google Scholar 

  • Aguilera, F., & Ruiz Valenzuela, L. (2012). Altitudinal fluctuations in the olive pollen emission: An approximation from olive groves of the south-east Iberian Peninsula. Aerobiologia, 28, 403–411.

    Article  Google Scholar 

  • Alba, F., Nieto-Lugilde, D., Comtois, P., de la Guardia, C. D., De Linares, C., & Ruiz, L. (2006). Airborne-pollen map for Olea europaea L. in eastern Andalusia (Spain) using GIS: Estimation models. Aerobiologia, 22, 109–118.

    Article  Google Scholar 

  • Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.

    Article  Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environment, 21, 455–466.

    Article  Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1999). Selecting the timing of flowering of temperate trees: Implications for tree phenology modelling. Plant, Cell and Environment, 22, 1–13.

    Article  Google Scholar 

  • Clot, B. (2001). Airborne birch pollen in Neuchâtel (Switzerland). Aerobiologia, 17, 25–29.

    Article  Google Scholar 

  • Dahl, A., Galán, C., Hajkova, L., Paulina, A., Sikoparija, B., Smith, M., et al. (2013). The onset, course and intensity of the pollen season. In M. Sofiev & K. C. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 29–70). Dodrecht: Springer.

    Chapter  Google Scholar 

  • Damialis, A., Fotiou, C., Halley, J. M., & Vokou, D. (2011). Effects of environmental factors on pollen production in anemophilous woody species. Trees, 25, 253–264.

    Article  Google Scholar 

  • Damialis, A., Halley, J. M., Gioleukas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41, 7011–7021.

    Article  CAS  Google Scholar 

  • Díaz de la Guardia, C., Alba, F., Trigo, M. M., Galán, C., & Sabariego, S. (2003). Aerobiological analysis of Olea europaea L. in different localities in southern Spain, forecasting models. Grana, 42, 234–243.

    Article  Google Scholar 

  • Dominguez-Vilches, E., Galán, C., Guerra, F., Villamandos, F., Infante, F., & Mediavilla, A. (1993). Spring pollen and related allergies in southern Spain. Journal of Investigational Allergology and Clinical Immunology, 5, 271–275.

    Google Scholar 

  • Galán, C., Cariñanos, G. P., Alcázar, T. P., & Domínguez, V. E. (2007). Manual de calidad y gestión de la Red Española de Aerobiologia. Service of publications of the University of Córdoba.

  • Galán, C., Garcia-Mozo, H., Cariñanos, P., Alcázar, P., & Domínguez, E. (2001). The role of temperature in the onset of the Olea europaea L. pollen season in south-western Spain. Internationa Journal of Biometeorology, 45, 8–12.

    Article  Google Scholar 

  • Galán, C., Garciá-Mozo, H., Vázquez, L., Ruiz, L., de la Guardia, C. D., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites of Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.

    Article  Google Scholar 

  • Galán, C., Garcíá-Mozo, H., Vazquez, L., Ruiz Valenzuela, L., de la Guardia, C. D., & Domínguez-Vilches, E. (2008). Modelling olive crop yield in Andalucía, Spain. Agronomy Journal, 100(1), 98–104.

    Article  Google Scholar 

  • Galán, C., Vázquez, L., Garciá-Mozo, H., & Domínguez, E. (2004). Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crops Research, 86, 43–51.

    Article  Google Scholar 

  • Jato, V., Rodriguez-Rajo, J., Dacosta, N., & Aira, M. J. (2004). Heat and chill requirements of Fraxinus flowering in Galicia (NW Spain). Grana, 43, 217–223.

    Article  Google Scholar 

  • Laaidi, M., Thibaudon, M., & Besancenot, J. P. (2003). Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). International Journal of Biometeorology, 48, 65–73.

    Article  Google Scholar 

  • Ministry of Agriculture and marine Fisheries. (2009). Plan vert du Maroc: de la stratégie à l’action du Maroc.

  • Orlandi, F., Fornaciari, M., & Romano, B. (2002). The use of phenological data to calculate chilling units in Olea europaea L. in relation to the onset of reproduction. International Journal of Biometeorology, 46, 2–8.

    Article  CAS  Google Scholar 

  • Orlandi, F., Vasquez, L. M. M., Ruga, L., Bonofiglio, T., Fornaciari, M., Garia-Mozo, H., et al. (2005). Bioclimatic requirements for olive flowering in two mediterranean regions located in the same latitude (Andalucia, Spain, and Sicily, Italy). Annals of Agriculture and Environmental Medicine, 12, 47–52.

    Google Scholar 

  • Osborne, C. P., Chuine, I., Viner, D., & Woodward, F. I. (2000). Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment, 23, 701–710.

    Article  Google Scholar 

  • Pidek, I. A. (2007). Nine years record of Alnus pollen deposition in the Roztocze region (SE Poland) with relation to vegetation data. Acta Agrobotanica, 60(2), 57–64.

    Article  Google Scholar 

  • Ribeiro, H., Cunha, M., & Abreu, I. (2006). Comparison of classical models for evaluating the heat requirements for olive (Olea europaea L.) in Portugal. Journal of Integrative Plant Biology, 48, 664–671.

    Article  Google Scholar 

  • Ring, D. R., Harris, M. K., Jackman, J. A., & Henson, J. L. (1983). A FORTRAN computer program for determining start date and base temperature for degree-day models. The Texas Agricultural Experiment Station Bull MP-1537, The Texas University System, College station, Texas.

  • Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C., et al. (2013). Monitoring, modelling and forecasting of the pollen season. In M. Sofiev & K. C. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 71–126). Dodrecht: Springer.

    Chapter  Google Scholar 

  • Snyder, R. L. (1985). Hand calculating degree-days. Agricultural and Forest Meteorology, 35, 353–358.

    Article  Google Scholar 

  • Trigo, M. M., Jato, V., Fernández, D., & Galán, C. (2008). Atlas aeropalinológico de España. Spain: University of León.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Bouziane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achmakh, L., Bouziane, H., Aboulaich, N. et al. Airborne pollen of Olea europaea L. in Tetouan (NW Morocco): heat requirements and forecasts. Aerobiologia 31, 191–199 (2015). https://doi.org/10.1007/s10453-014-9356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-014-9356-0

Keywords

Navigation