Skip to main content
Log in

Seasonal and spatial functional shifts in phytoplankton communities of five tropical reservoirs

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Trait-based approaches have become increasingly important and valuable in understanding phytoplankton community assembly and composition. These approaches allow for comparisons between water bodies with different species composition. We hypothesize that similar changes in environmental conditions lead to similar responses with regard to functional traits of phytoplankton communities, regardless of trophic state or species composition. We studied the phytoplankton (species composition, community trait mean and diversity) of five reservoirs in Brazil along a trophic gradient from ultra-oligotrophic to meso-eutrophic. Samples at two seasons (summer/rainy and winter/dry) with a horizontal and vertical resolution were taken. Using multivariate analysis, the five reservoirs separated, despite some overlap, according to their environmental variables (mainly total phosphorus, conductivity, pH, chlorophyll a). However, between the seasonal periods, the reservoirs shifted in a similar direction in the multi-dimensional space. The seasonal response of the overall phytoplankton community trait mean differed between the ultra-oligotrophic and the other reservoirs, with three reservoirs exhibiting a very similar community trait mean despite considerable differences in species composition. Within-season differences between different water layers were low. The functional diversity was also unrelated to the trophic state of the reservoirs. Thus, seasonal environmental changes had strong influence on the functional characteristics of the phytoplankton community in reservoirs with distinct trophic condition and species composition. These results demonstrate that an ataxonomic trait-based approach is a relevant tool for comparative studies in phytoplankton ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Santana et al. (2017)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnett AJ, Finlay K, Beisner BE (2007) Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw Biol 52:796–813

    Article  Google Scholar 

  • Becker V, Huszar VLM, Naselli-Flores L, Padisák J (2008) Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshw Biol 53:952–963

    Article  Google Scholar 

  • CEN (Comité Européen de Normalisation) (2003) Water quality—guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. EN 13946, Geneva

  • CEPAGRI (Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura) (2016) http://www.cpa.unicamp.br/outras-informacoes/clima-dos-municipios-paulistas.html. Accessed 10 June 2016

  • Clegg MR, Maberly SC, Jones RI (2004) Dominance and compromise in freshwater phytoplanktonic flagellates: the interactions of behavioral preferences for conflicting environmental gradients. Funct Ecol 18:371–380

    Article  Google Scholar 

  • Cole G (1983) Textbook of limnology, 3rd edn. The C.V. Mosby Co., London

    Google Scholar 

  • Conti L, Schmidt-Kloiber A, Grenouillet G, Graf W (2014) A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721:297–315

    Article  CAS  Google Scholar 

  • Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA (2014) Untangling the fungal niche: the trait-based approach. Front Microbiol 5:579

    Article  PubMed  PubMed Central  Google Scholar 

  • DAEE (Departamento de Águas e Energia Elétrica) (2015) http://www.daee.sp.gov.br/index.php?option=com_content&view=article&id=853:barragens-e-sistema-produtor-alto-tiete&catid=36:programa. Accessed 08 October 2015

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 15:646–655

    Article  Google Scholar 

  • Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol Evol 3:2958–2975

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards KF, Litchman E, Klausmeier CA (2013) Functional traits explain phytoplankton responses to environmental gradients across lakes of the United States. Ecology 94:1626–1635

    Article  PubMed  Google Scholar 

  • Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, Granéli E, Burkholder JM (2013) Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35:3–11

    Article  Google Scholar 

  • Fonseca BM, Bicudo CEM (2008) Phytoplankton seasonal variation in a shallow stratified eutrophic reservoir (Garças Pond, Brazil). Hydrobiologia 600:267–282

    Article  CAS  Google Scholar 

  • Fraisse S, Bormans M, Lagadeuc Y (2013) Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasting flow regime. Aquat Ecol 47:315–327

    Article  Google Scholar 

  • Golterman HL, Clymo RS (1971) Methods for chemical analysis of freshwaters. International biological program. Blackwell, Oxford

    Google Scholar 

  • Golterman HL, Clymo RS, Ohmstad MAM (1978) Methods for physical and chemical analysis of freshwaters. International biological programme (Handbook, 8), 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Hillebrand H, Dürseken CD, Kirschiel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • INMET (Instituto Nacional de Meteorologia) (2016) Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP). Estação 83781 (Mirante de Santana, SP) http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Accessed 10 June 2016

  • Kamjunke N, Henrichs T, Gaedke U (2007) Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication. J Plankton Res 29:39–46

    Article  CAS  Google Scholar 

  • Köppen W (1936) Das geographische system der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie, vol 1. Gebrüder Bornträger, Berlin, pp 1–44

    Google Scholar 

  • Kruk C, Huszar VLM, Peeters ETHM, Bonilla S, Costa L, Lurling M, Reynolds CS, Scheffer M (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627

    Article  Google Scholar 

  • Kruk C, Segura AM, Costa LS, Lacerot G, Kosten S, Peeters E, Huszar VLM, Mazzeo N, Scheffer M (2016) Functional redundancy increases towards the tropics in lake phytoplankton. J Plankton Res. doi:10.1093/plankt/fbw083

    Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474–478

    Article  CAS  PubMed  Google Scholar 

  • Lee RE (2008) Phycology, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Syst 39:615–639

    Article  Google Scholar 

  • Longhi ML, Beisner BE (2010) Patterns in taxonomic and functional diversity in lake phytoplankton. Freshw Biol 55:1349–1366

    Article  CAS  Google Scholar 

  • Lopes MRM, Bicudo CEM, Ferragut C (2005) Short term spatial and temporal of phytoplankton in a shallow tropical oligotrophic reservoir, southeast Brazil. Hydrobiologia 542:235–247

    Article  Google Scholar 

  • Mackereth FJH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Freshwater Biological Association, Scientific Publication, 36. Titus Wilson & Son Ltd, Kendall

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science, Oxford

    Google Scholar 

  • McCune BMJ, Mefford MJ (2011) PC-ORD Multivariate analysis of ecological data. Version 6.0. MJM software. Gleneden Beach, Oregon

    Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, Not F, Hansen PJ, Hallegraeff G, Sanders R, Wilken S, McManus G, Johnson M, Pitta P, Vage S, Berge T, Calbet A, Thingstand F, Jeong HJ, Burkholder J, Gilbert PM, Granéli E, Lundgren V (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies. Protist 167:106–120

    Article  CAS  PubMed  Google Scholar 

  • Moraes J, Carvalho JP, Carlstrom Filho AA (2005) Caracterização e evolução do uso das terras na sub-bacia Tietê-Cabeceiras. Report project Negowat, p 11

  • Naselli-Flores L (2000) Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424:1–11

    Article  CAS  Google Scholar 

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1–19

    Article  Google Scholar 

  • Pálffy K, Présing M, Vörös L (2013) Diversity patterns of trait-based phytoplankton functional groups in two basins of a large, shallow lake (Lake Balaton, Hungary) with different trophic state. Aquat Ecol 47:195–210

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness, and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Porat R, Teltsch B, Perelman A, Dubinsky Z (2001) Diel buoyancy changes by the cyanobacterium Aphanizomenon ovalisporum from a shallow reservoir. J Plankton Res 23:753–763

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428

    Article  Google Scholar 

  • SABESP (Companhia de Saneamento Básico do Estado de São Paulo) (2015) http://site.sabesp.com.br/site/interna/Default.aspx?secaoId=36. Accessed 07 October 2015

  • Santana LM, Crossetti LO, Ferragut C (2017) Ecological status assessment of tropical reservoirs through the assemblage index of phytoplankton functional groups. Braz J Bot. doi:10.1007/s40415-017-0373-4

    Google Scholar 

  • Santos AMC, Carneiro FM, Cianciaruso MV (2015) Predicting productivity in tropical reservoirs: the roles of phytoplankton taxonomic and functional diversity. Ecol Indic 48:428–435

    Article  Google Scholar 

  • Sartory DP, Grobbelaar JU (1984) Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177–187

    Article  CAS  Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    Article  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1960) A manual of sea water analysis. Bull Fish Res Board Can 125:1–185

    Google Scholar 

  • Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346

    Article  Google Scholar 

  • Tilman D (2001) Functional diversity. In: Levins SA (ed) Encyclopedia of biodiversity. Academic, San Diego, pp 109–120

    Chapter  Google Scholar 

  • Utermöhl H (1958) Zur Vervolkomnung der quantitative Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Valderrama GC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10:109–122

    Article  CAS  Google Scholar 

  • Verheyen K, Honnay O, Motzkin G, Hermy M, Foster DR (2003) Response of forest plant species to land-use change: a life-history trait-based approach. J Ecol 91:563–577

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Vogt RJ, Beisner BE, Prairie YT (2010) Functional diversity is positively associated with biomass for lake diatoms. Freshw Biol 55:1636–1646

    CAS  Google Scholar 

  • Weithoff G (2003) The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton—a new understanding of phytoplankton ecology? Freshw Biol 48:1669–1675

    Article  Google Scholar 

  • Weithoff G, Gaedke U (2016) Mean functional traits of lake phytoplankton reflect seasonal and inter-annual changes in nutrients, climate and herbivory. J Plankton Res. doi:10.1093/plankt/fbw072

    Google Scholar 

  • Weithoff G, Rocha MR, Gaedke U (2015) Comparing seasonal dynamics of functional and taxonomic diversity reveals the driving forces underlying phytoplankton community structure. Freshw Biol 60:758–767

    Article  Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc B 276:427–435

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L. M. S. was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) with a doctoral fellowship (Grant No. 2011/24000-4). This work was carried out within the framework of the AcquaSed project also supported by funds from FAPESP (Grant No. 2009/53898–9). We thank especially Dra. Angélica C. Righetti da Rocha for her help and efforts in the limnological and diatom database. We deeply appreciate the assistance of personnel from the agency in charge São Paulo’s public water supply—SABESP/RHMS (Companhia de Saneamento do Estado de São Paulo, Divisão de Recursos Hídricos Metropolitanos Sudoeste) for their valuable logistical support during the fieldwork. We also thank all students and technicians from Laboratório de Ecologia Aquática, Instituto de Botânica, involved in the laboratory and fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucineide Maria Santana.

Additional information

Handling Editor: Miquel Lurling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, L.M., Weithoff, G. & Ferragut, C. Seasonal and spatial functional shifts in phytoplankton communities of five tropical reservoirs. Aquat Ecol 51, 531–543 (2017). https://doi.org/10.1007/s10452-017-9634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-017-9634-3

Keywords

Navigation