Skip to main content
Log in

Growth, regeneration and colonisation of Egeria densa fragments: the effect of autumn temperature increases

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The present study analysed the influence of higher temperatures on the growth, regeneration and colonisation abilities of apical shoot fragments from three naturalised and one cultivated population of Egeria densa. Our hypotheses were that (1) increased temperatures would favour the growth, regeneration and colonisation of E. densa shoots and (2) fragments from naturalised populations would have higher establishment success than fragments from cultivated plants. We tested the effect of average minimal autumn temperature (9 °C), average maximal autumn temperature (16 °C) and an increase of 3 °C above these values, on apical shoots of these four populations of E. densa under controlled conditions in two growth chambers. Our results showed that temperature and the origin of the population had an effect on the growth rate of E. densa fragments, on their regeneration and colonisation abilities at the maximal autumn temperature. An increase of 3 °C stimulated the growth rate of E. densa at low temperatures but had no effect on the plant colonisation and regeneration abilities. The responses of populations to low temperatures (9–12 °C) were more similar than expected. In contrast, at higher temperatures (16–19 °C) the cultivated population showed lower apical growth, higher regeneration and similar colonisation abilities to the naturalised populations. At these higher temperatures, the responses also differed among the naturalised populations. These results suggest that global warming has implications for the invasiveness of E. densa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AFNOR (1990) Recueil des normes françaises. Eaux. Méthodes d’essais. 4ème ed, Paris

  • Ågren GI (1985) Theory for growth of plants derived from the nitrogen productivity concept. Physiol Plant 64:17–28. doi:10.1111/j.1399-3054.1985.tb01207.x

    Article  Google Scholar 

  • Barko JW, Smart RM (1981) Comparative influences of light and temperature on the growth and metabolism of selected submersed freswater macrophytes. Ecol Monogr 51:219–235

    Article  Google Scholar 

  • Barrat-Segretain MH, Bornette G, Hering-Vilas-Bôas A (1998) Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquat Bot 60:201–211. doi:10.1016/S0304-3770(97)00091-0

    Article  Google Scholar 

  • Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701–9704. doi:10.1073/pnas.96.17.9701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo Y, Guarín A, Guillot G (2006) Biomass distribution, growth and decay of Egeria densa in a tropical high-mountain reservoir (NEUSA, Colombia). Aquat Bot 85:7–15. doi:10.1016/j.aquabot.2006.01.006

    Article  Google Scholar 

  • Cook CKD, Urmi-König K (1984) A revision of the genus Egeria (Hydrocharitaceae). Aquat Bot 19:73–96

    Article  Google Scholar 

  • Curt MD, Curt G, Aguado PL, Fernández J (2010) Proposal for the biological control of Egeria densa in small reservoirs: a Spanish case. J Aquat Plant Manag 48:124–127

    Google Scholar 

  • Darrin H (2009) Invasive species of the Pacific Northwest: Brazilian Elodea, Egeria densa, Anacharis, Philotria densa, Giant Elodea, Brazilian waterweed

  • Di Nino F, Thiébaut G, Muller S (2007) Phenology and phenotypic variation of genetically uniform populations of Elodea nuttallii (Planch.) H. St John at sites of different trophic states. Fundam Appl Limnol 168:335–343. doi:10.1127/1863-9135/2007/0168-0335

    Article  Google Scholar 

  • Feijoó C, García ME, Momo F, Toja J (2002) Nutrient absorption by the submerged macrophyte. Limnetica 21:93–104

    Google Scholar 

  • Feuillade J (1961a) Une plante aquatique nouvelle pour la France Elodea densa (Planch.) Casp. Bull la Soc Lineenne Normandie 10:47–51

    Google Scholar 

  • Feuillade J (1961b) Note complémentaire sur Elodea densa (Planch.) Casp. Bull la Soc Lineenne Normandie 10:185–188

    Google Scholar 

  • Fitter AH, Fitter RSR, Harris ITB, Williamson MH (1995) Relationships between 1st flowering date and temperature in the flora of a locality in central England. Funct Ecol 9:55–60

    Article  Google Scholar 

  • Gallinat AS, Primack RB, Wagner DL (2015) Autumn, the neglected season in climate change research. Trends Ecol Evol 30:1–8. doi:10.1016/j.tree.2015.01.004

    Article  Google Scholar 

  • Getsinger KD, Dillon CR (1984) Quiescence, growth and senescence of Egeria densa in Lake Marion. Aquat Bot 20:329–338. doi:10.1016/0304-3770(84)90096-2

    Article  Google Scholar 

  • GISD (Global Invasive Species Database) (2015) Egeria densa. http://www.issg.org/database/species/search.asp?sts=sss&st=sss&fr=1&x=23&y=1&sn=Egeria+densa&rn=&hci=-1&ei=-1&lang=EN. Accessed 11 May 2015

  • Haramoto T, Ikusima I (1988) Life-cycle of Egeria densa Planch, an aquatic plant naturalized in Japan. Aquat Bot 30:389–403

    Article  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543. doi:10.1111/j.1523-1739.2008.00951.x

    Article  PubMed  Google Scholar 

  • Hussner A, van Dam H, Vermaat JE, Hilt S (2014) Comparison of native and neophytic aquatic macrophyte developments in a geothermally warmed river and thermally normal channels. Fundam Appl Limnol/Arch für Hydrobiol 185:155–165. doi:10.1127/fal/2014/0629

    Article  Google Scholar 

  • Hyldgaard B, Sorrell B, Brix H (2014) Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response. Freshw Biol 59:777–788. doi:10.1111/fwb.12303

    Article  Google Scholar 

  • IPANE (2015) Invasive plant Atlas of New England—Egeria densa. https://www.eddmaps.org/ipane/ipanespecies/aquatics/Egeria_densa.htm. Accessed 12 Oct 2015

  • Kadono Y, Nakamura T, Suzuki T (1997) Genetic uniformity of two aquatic plants, Egeria densa Planch. and Elodea nuttallii (Planch.) St. John, introduced in Japan. Jpn J Limnol 58:197–203

    Article  CAS  Google Scholar 

  • Madsen TV, Brix H (1997) Growth, photosynthesis and acclimation by two submerged macrophytes in relation to temperature. Oecologia 110:320–327. doi:10.1007/s004420050165

    Article  Google Scholar 

  • Mainka SA, Howard GW (2010) Climate change and invasive species: double jeopardy. Integr Zool 5:102–111. doi:10.1111/j.1749-4877.2010.00193.x

    Article  PubMed  Google Scholar 

  • McKee D, Atkinson D, Collings SE et al (2003) Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnol Oceanogr 48:707–722. doi:10.4319/lo.2003.48.2.0707

    Article  Google Scholar 

  • Pistori RET, Camargo AFMC, Henry-Silva G (2004) Relative growth rate and doubling time of the submerged aquatic macrophyte. Acta Limnol Bras 16:77–84

    Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ et al (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993. doi:10.1111/j.1461-0248.2006.00950.x

    Article  PubMed  Google Scholar 

  • Riis T, Madsen TV, Sennels RSH (2009) Regeneration, colonisation and growth rates of allofragments in four common stream plants. Aquat Bot 90:209–212. doi:10.1016/j.aquabot.2008.08.005

    Article  Google Scholar 

  • Riis T, Olesen B, Clayton JS, Lambertini C, Brix H, Sorrel B (2012) Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquat Bot 102:56–60

    Article  Google Scholar 

  • Sexton JP, Mckay JK, Sala A (2002) Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecol Appl 12:1652–1660

    Article  Google Scholar 

  • Silveira MJ, Thomaz SM, Mormul RP, Camacho FP (2009) Effects of desiccation and sediment type on early regeneration of plant fragments of three species of aquatic macrophytes. Int Rev Hydrobiol 94:169–178. doi:10.1002/iroh.200811086

    Article  CAS  Google Scholar 

  • St John H (1961) Monograph of the genus Egeria Planchon. Darwiniana 12:299–310

    Google Scholar 

  • Tanner CC, Clayton JS, Wells RDS (1993) Effects of suspended solids on the establishment and growth of Egeria densa. Aquat Bot 45:299–310. doi:10.1016/0304-3770(93)90030-Z

    Article  Google Scholar 

  • Yarrow M, Marin V, Finlayson M et al (2009) The ecology of Egeria densa Planchon (Liliopsida: Alismatales): a wetland ecosystem engineer? Rev Chil Hist Nat 82:299–313

    Article  Google Scholar 

Download references

Acknowledgments

We thank Etienne Camenen for his helpful assistance. We would like to thank the two anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Thiébaut.

Additional information

Handling Editor: Piet Spaak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiébaut, G., Gillard, M. & Deleu, C. Growth, regeneration and colonisation of Egeria densa fragments: the effect of autumn temperature increases. Aquat Ecol 50, 175–185 (2016). https://doi.org/10.1007/s10452-016-9566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-016-9566-3

Keywords

Navigation