Skip to main content

Advertisement

Log in

Disentangling the roles of spatial and environmental variables in shaping benthic algal assemblages in rivers of central and northern China

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Benthic algae were collected from central and northern Chinese rivers to test the hypothesis that geographic location has significant contributions in shaping algal assemblages. We used Moran’s eigenvector maps (MEM) to model spatial components and variation partitioning to quantify the influences of spatial and environmental variables on regional patterns of algal richness and community composition, respectively. We found that variation in algal richness was attributed to MEM component 2, 8, and 9 and the quadratic term of N–NO3. Regarding abundance data, latitude, longitude, and MEM component 1, 2, and 7 were important spatial variables. Although P–PO4, pH, and annual mean temperature were significant environmental variables influencing algal community composition, they were all spatially structured. Among the total explained variance in both algal metrics, spatial proportions were higher than that of environmental variables. We also found that abundant species of Achnanthidium minutissimum, Cocconeis placentula, Cymbella delicatula, Cymbella affinis, Cymbella turgidula, and Synedra ulna displayed clear spatially related patterns. In conclusion, the contributions of spatial and environmental variables to regional variation of algal assemblages are scale-dependent. As for our study scale (~1,000 km), spatial control may be more important. Since spatial effects could obscure local environmental impacts on algal communities, appropriate study scale and statistical methods should be taken into account in algal bioassessment. We recommend inclusion of both algal richness and community composition in study of algal biogeography, due to their different relationships with spatial and environmental variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen R, Poulin M, Borcard D, Laiho R, Laine J, Vasander H, Tuittila ET (2011) Environmental control and spatial structures in peatland vegetation. J Veg Sci 22:878–890

    Article  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague (in Dutch)

    Google Scholar 

  • Besse-Lototskaya A, Verdonschot PFM, Coste M, Van de Vijver B (2011) Evaluation of European diatom trophic indices. Ecol Indic 11:456–467

    Article  Google Scholar 

  • Biggs BJF, Smith RA (2002) Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnol Oceanogr 47:1175–1186

    Article  CAS  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer Science + Business Media, New York

    Book  Google Scholar 

  • Chen J, Xia X (1999) Progress in research on river hydro-chemistry in china. Sci Geogr Sin 19:290–294 (in Chinese)

    Google Scholar 

  • Chinese NEPA (2002) Water and Wastewater Monitoring Methods, 4th edn. Chinese Environmental Science Publishing House, Beijing

    Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    Article  PubMed  Google Scholar 

  • Dainese M, Poldini L (2012) Plant and animal diversity in a region of the Southern Alps: the role of environmental and spatial processes. Landsc Ecol 27:1–15

    Article  Google Scholar 

  • Danielson TJ, Loftin CS, Tsomides L, DiFranco JL, Connors B (2011) Algal bioassessment metrics for wadeable streams and rivers of Maine, USA. J N Am Benthol Soc 30:1033–1048

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Duong TT, Coste M, Feurtet-Mazel A, Dang DK, Gold C, Park YS, Boudou A (2006) Impact of urban pollution from the Hanoi area on benthic diatom communities collected from the Red, Nhue and Tolich rivers (Vietnam). Hydrobiologia 563:201–216

    Article  CAS  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Gilbert B, Bennett JR (2010) Partitioning variation in ecological communities: do the numbers add up? J Appl Ecol 47:1071–1082

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation Ecology. Oxford University Press, Oxford

    Google Scholar 

  • Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshwat Biol 56:1703–1722

    Article  Google Scholar 

  • Heino J (2013) The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol Rev 88:166–178

    Article  PubMed  Google Scholar 

  • Heino J, Soininen J (2006) Regional occupancy in unicellular eukaryotes: a reflection of niche breadth, habitat availability or size-related dispersal capacity? Freshwat Biol 51:672–685

    Article  Google Scholar 

  • Heino J, Soininen J (2007) Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biol Conserv 137:78–89

    Article  Google Scholar 

  • Heino J, Bini LM, Karjalainen SM, Mykrä H, Soininen J, Vieira LCG, Diniz-Filho JAF (2010) Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119:129–137

    Article  Google Scholar 

  • Heino J, Grönroos M, Soininen J, Virtanen R, Muotka T (2012) Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121:537–544

    Article  Google Scholar 

  • Holyoak M, Leibold MA, Mouquet N, Holt RD, Hoopes M (2005) A framework for large scale community ecology. In: Holyoak M et al (eds) Metacommunities: spatial dynamics and ecological communities. The University of Chicago Press, Chicago, pp 1–31

    Google Scholar 

  • Hu H, Wei Y (2006) The Freshwater Algae of China: Systematics. Science Press, Beijing (in Chinese), Taxonomy and Ecology

    Google Scholar 

  • Jao C (1988) Flora Algarum Sinigrum Aquae Dulcis (Tomus I): Zygnemataceae. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Kociolek J, Spaulding S (2000) Freshwater diatom biogeography. Nova Hedwigia 71:223–242

    Google Scholar 

  • Kristiansen J (1996) Dispersal of freshwater algae—a review. Hydrobiologia 336:151–157

    Article  Google Scholar 

  • Legendre P (2008) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J of Plant Ecol 1:3–8

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Leh C, Wang T (1963) Chemical characteristics of Chinese rivers. Acta Geogr Sin 29:1–13 (in Chinese)

    Google Scholar 

  • Leibold M, Holyoak M, Mouquet N, Amarasekare P, Chase J, Hoopes M, Holt R, Shurin J, Law R, Tilman D (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Leira M, Sabater S (2005) Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Res 39:73–82

    Article  PubMed  CAS  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Li S, Bi L (1998) Flora Algarum Sinicarum Aquae Dulcis (Tomus V): Ulothricales Ulvales Chaetophorales Trentepohliales Sphaeropleales. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491

    Article  PubMed  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  PubMed  CAS  Google Scholar 

  • Mezger D, Pfeiffer M (2011) Partitioning the impact of abiotic factors and spatial patterns on species richness and community structure of ground ant assemblages in four Bornean rainforests. Ecography 34:39–48

    Article  Google Scholar 

  • Ng IS, Carr CM, Cottenie K (2009) Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619:133–143

    Article  Google Scholar 

  • Passy SI (2007) Community analysis in stream biomonitoring: what we measure and what we don’t. Environ Monit Assess 127:409–417

    Article  PubMed  CAS  Google Scholar 

  • Passy SI (2010) A distinct latitudinal gradient of diatom diversity is linked to resource supply. Ecology 91:36–41

    Article  PubMed  Google Scholar 

  • Passy SI, Blanchet FG (2007) Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Divers Distrib 13:670–679

    Article  Google Scholar 

  • Patrick R, Reimer CW (1966) The Diatoms of the United States, exclusive of Alaska and Hawaii. Monograph No. 13. Academy of Natural Sciences, Philadelphia

    Google Scholar 

  • Patrick R, Reimer CW (1975) The Diatoms of the United States. Vol. 2, Part 1. Monograph No. 13. Academy of Natural Sciences, Philadelphia

    Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Peterson CG, Grimm NB (1992) Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. J N Am Benthol Soc 11:20–36

    Article  Google Scholar 

  • Pringle CM (1990) Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream Algae. Ecology 71:905–920

    Article  Google Scholar 

  • Qi Y (1995) Flora Algarum Sinicarum Aquae Dulcis (Tomus IV): Bacillariophyta Centreae. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rimet F (2012) Recent views on river pollution and diatoms. Hydrobiologia 683:1–24

    Article  Google Scholar 

  • Sattler T, Borcard D, Arlettaz R, Bontadina F, Legendre P, Obrist M, Moretti M (2010) Spider, bee, and bird communities in cities are shaped by environmental control and high stochasticity. Ecology 91:3343–3353

    Article  PubMed  CAS  Google Scholar 

  • Schuldt A, Assmann T (2009) Environmental and historical effects on richness and endemism patterns of carabid beetles in the western Palaearctic. Ecography 32:705–714

    Article  Google Scholar 

  • Sharma NK, Rai AK (2010) Biodiversity and biogeography of microalgae: progress and pitfalls. Environ Rev 19:1–15

    Article  CAS  Google Scholar 

  • Sharma S, Legendre P, De Cáceres M, Boisclair D (2011) The role of environmental and spatial processes in structuring native and non-native fish communities across thousands of lakes. Ecography 34:762–771

    Article  Google Scholar 

  • Shi Z (2004) Flora Algarum Sinicarum Aquae Dulcis (Tomus XII): Bacillariophyta Gomphonemacea. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648–655

    Article  Google Scholar 

  • Soininen J (2007) Environmental and spatial control of freshwater diatoms—a review. Diatom Res 22:473–490

    Article  Google Scholar 

  • Soininen J (2012) Macroecology of unicellular organisms—patterns and processes. Env Microbiol Rep 4:10–22

    Article  Google Scholar 

  • Soininen J, Paavola R, Muotka T (2004) Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27:330–342

    Article  Google Scholar 

  • Soininen J, Paavola R, Kwandrans J, Muotka T (2009) Diatoms: unicellular surrogates for macroalgal community structure in streams? Biodivers Conserv 18:79–89

    Article  Google Scholar 

  • Stevenson R, Pan Y, van Dam H (2010) Assessing environmental conditions in rivers and streams with diatoms. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 57–85

    Chapter  Google Scholar 

  • Stomp M, Huisman J, Mittelbach GG, Litchman E, Klausmeier CA (2011) Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92:2096–2107

    Article  PubMed  Google Scholar 

  • Tang T, Qu X, Li D, Liu R, Xie Z, Cai Q (2004) Benthic algae of the Xiangxi River China. J Freshwat Ecol 19:597–604

    Article  Google Scholar 

  • Tang T, Niu S, Dudgeon D (2013) Responses of epibenthic algal assemblages to water abstraction in Hong Kong streams. Hydrobiologia 703:225–237

    Article  CAS  Google Scholar 

  • Ulrich W, Zalewski M (2006) Abundance and co-occurrence patterns of core and satellite species of ground beetles on small lake islands. Oikos 114:338–348

    Article  Google Scholar 

  • Vanormelingen P, Cottenie K, Michels E, Muylaert K, Vyverman WIM, De Meester LUC (2008a) The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwat Biol 53:2170–2183

    Google Scholar 

  • Vanormelingen P, Verleyen E, Vyverman W (2008b) The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodivers Conserv 17:393–405

    Article  Google Scholar 

  • Virtanen L, Soininen J (2012) The roles of environment and space in shaping stream diatom communities. Eur J Phycol 47:160–168

    Article  Google Scholar 

  • Wu C (2001) Changes of river system and new tectonic movement in north China mountainous area. N China Earthq Sci 19:1–6 (in Chinese)

    Google Scholar 

  • Wu C, Zhang X, Zhao Y (2000) Stratiform geomorphology and Himalayan tectonic movement on the north China mountains. Geogr Terr Res 16:82–86 (in Chinese)

    CAS  Google Scholar 

  • Wu N, Cai Q, Tang T, Qu X (2007) Benthic algae of the Gangqu River, Shangrila, China. J Freshwat Ecol 22:151–153

    Article  CAS  Google Scholar 

  • Zhao J (1995) Physical Geography of China, 3rd edn. Advanced Education Press, Beijing (in Chinese)

    Google Scholar 

  • Zhu H (2007) Flora Algarum Sinicarum Aquae Dulcis (Tomus IX): Cyanophyta Hormogonophyceae. Science Press, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07104-002; No. 2012ZX07501-002-07) and National Natural Science Foundation of China (No. 30330140). We thank Xiaoli Tong for help in fieldwork, Ruiqiu Liu and Xinghuan Jia for assistance in chemical analysis. Special thanks to Bill Gould for language improvement and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Cai.

Additional information

Handling Editor: Piet Spaak

Appendix

Appendix

See Tables 4 and 5.

Table 4 The mean values of measured environmental variables for each site (sites were listed from south to north)
Table 5 Algal species displaying distinct positive or negative correlations with the significant RDA canonical axes (taxon with an absolute species score >0.1 is presented)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, T., Wu, N., Li, F. et al. Disentangling the roles of spatial and environmental variables in shaping benthic algal assemblages in rivers of central and northern China. Aquat Ecol 47, 453–466 (2013). https://doi.org/10.1007/s10452-013-9458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-013-9458-8

Keywords

Navigation