Skip to main content

Advertisement

Log in

Impact of agricultural land use on aquatic insect assemblages in the Garonne river catchment (SW France)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The impact of agricultural land use on the composition and structure of aquatic insect assemblages (i.e., taxa of Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera (EPTC)) was investigated in tributary streams of the Garonne river basin, southern France. The self-organizing map (SOM) method was applied to compare both instream environmental conditions and EPTC assemblages between forest and agricultural streams. According to the SOM model, the study sites were classified into three main clusters corresponding to distinct EPTC assemblages. The SOM cluster associated with most of the agricultural sites had lower EPTC species richness and diversity. This cluster was also characterized by high levels of total dissolved solids, nitrate (NO3), and chemical oxygen demand. Overall, our study shows that agricultural streams when compared with forest streams had lower biological integrity. In accordance with the European Water Framework Directive, our results indicate that the sites most impacted by agricultural land use should be restored and that the least-impacted forest sites could serve as reference conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaenssens V, Verdonschot PFM, Goethals PLM, De Pauw N (2007) Application of clustering techniques for the characterization of macroinvertebrate communities to support river restoration management. Aquatic Ecol 41:387–398. doi:10.1007/s10452-005-2836-0

    Article  Google Scholar 

  • Alhoniemi E, Himberg J, Parhankangas J, Vesanto J (2000) SOM Toolbox (online). http://www.cis.hut.fi/projects/somtoolbox. Accessed June 2003

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284. doi:10.1146/annurev.ecolsys.35.120202.110122

    Article  Google Scholar 

  • Allan JD, Flecker AS (1993) Biodiversity conservation in running waters. Bioscience 43:32–43. doi:10.2307/1312104

    Article  Google Scholar 

  • Allan JD, Erickson DL, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161. doi:10.1046/j.1365-2427.1997.d01-546.x

    Article  Google Scholar 

  • APHA, AWWA, WPCF (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington, 1134 pp

  • Barbour MT, Gerritsen J, Griffith GE, Frydenborg R, McCarron E, White JS et al (1996) A framework for biological criteria for Florida streams using benthic macroinvertebrates. J N Am Benthol Soc 15:185–211. doi:10.2307/1467948

    Article  Google Scholar 

  • Beketov MA (2004) Different sensitivity of mayflies (Insecta, Ephemeroptera) to ammonia, nitrite and nitrate: linkage between experimental and observational data. Hydrobiologia 528:209–216. doi:10.1007/s10750-004-2346-4

    Article  CAS  Google Scholar 

  • Berthélemy C (1966) Recherches écologiques et biogéographiques sur les plécoptéres et coléoptéres d’eau courante (Hydraena et Elminthidae) des Pyrénées. Ann Limnol—Int J Limnol 2:227–458

    Google Scholar 

  • Chapman LJ, Chapman CA (2002) Tropical forest degradation and aquatic ecosystems: our current state and knowledge. In: Collares-Pereira MJ, Cowx IG, Coelho MM (eds) Conservation of freshwater fishes: options for the future, fishing news books. Blackwell, Oxford, pp 235–249

    Google Scholar 

  • Chauvet E, Décamps H (1989) Lateral interactions in a fluvial landscape: the river Garonne, France. J N Am Benthol Soc 8:9–17. doi:10.2307/1467398

    Article  Google Scholar 

  • Chon TS, Park YS, Moon KH, Cha EY (1996) Patternizing communities by using an artificial neural network. Ecol Modell 90:69–78. doi:10.1016/0304-3800(95)00148-4

    Article  Google Scholar 

  • Chutter FM (1968) The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologia 34:57–76

    Google Scholar 

  • Collier KJ (1995) Environmental factors affecting the taxonomic composition of aquatic macroinvertebrate communities in lowland waterways of Northland, New Zealand. N Z J Mar Freshw Res 29:453–465

    Google Scholar 

  • Compin A, Céréghino R (2003) Sensitivity of aquatic insect species richness to disturbance in the Adour–Garonne stream system (France). Ecol Indic 3:135–142. doi:10.1016/S1470-160X(03)00016-5

    Article  Google Scholar 

  • Compin A, Céréghino R (2007) Spatial patterns of macroinvertebrate functional feeding groups in streams in relation to physical and land-cover in southwestern France. Landsc Ecol 22:1215–1225. doi:10.1007/s10980-007-9101-y

    Article  Google Scholar 

  • Delong MD, Brusven MA (1998) Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environ Manage 22:445–457. doi:10.1007/s002679900118

    Article  PubMed  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Leveque C et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. doi:10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  • Fitzpatrick FA, Scudder BC, Lenz BN, Sullivan DJ (2001) Effects of multi-scale environmental characteristics on agricultural stream biota in eastern Wisconsin. J Am Water Resour Assoc 37:1489–1507. doi:10.1111/j.1752-1688.2001.tb03655.x

    Article  Google Scholar 

  • Fortuné M (1988) Usages passées et écologie de la Garonne. Ph.D. thesis, University of Toulouse, Toulouse

  • García-Criado F, Fernández-Aláez M (1995) Aquatic Coleoptera (Hydraenidae and Elmidae) as indicators of the chemical characteristics of water in the Orbigo river basin (N-W Spain). Ann Limnol—Int J Limnol 31:185–199

    Article  Google Scholar 

  • Genito D, Gburek WJ, Sharpley AN (2002) Response of stream macroinvertebrates to agricultural land cover in a small watershed. J Freshw Ecol 17:109–119

    CAS  Google Scholar 

  • Gergel SE, Turner MG, Miller JR, Melack JM, Stanley EH (2002) Landscape indicators of human impacts to riverine systems. Aquat Sci 64:118–128. doi:10.1007/s00027-002-8060-2

    Article  CAS  Google Scholar 

  • Guerold F (2000) Influence of taxonomic determination level on several community indices. Water Res 34:487–492. doi:10.1016/S0043-1354(99)00165-7

    Article  CAS  Google Scholar 

  • Harding JS, Benfield EF, Bolstad PV, Helfman GS III, Jones EBD (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci USA 95:14843–14847. doi:10.1073/pnas.95.25.14843

    Article  CAS  PubMed  Google Scholar 

  • Hauer FR, Resh VH (1996) Benthic macroinvertebrates. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 339–365

    Google Scholar 

  • Hilsenhoff WL (1977) Use of arthropods to evaluate water quality of streams. Technical bulletin no. 100. Department of Natural Resources, Madison, Wisconsin

  • Hynes HBN (1970) The ecology of running waters. University of Toronto Press, Toronto, 555 pp

  • Johnson RK, Wiederholm T, Rosenberg DM (1993) Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring and benthic macroinvertrbrates. Chapman & Hall, London, pp 40–158

    Google Scholar 

  • Kasangaki A, Chapman LJ, Balirwa J (2008) Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshw Biol 53:681–697. doi:10.1111/j.1365-2427.2007.01925.x

    Article  Google Scholar 

  • Kohonen T (1989) Self-organization and associative memory. Springer, Berlin, 312 pp

    Google Scholar 

  • Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, Berlin

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, The Netherlands

    Google Scholar 

  • Lek S, Guégan JF (2000) Artificial neuronal networks: application to ecology and evolution. Springer, Berlin, 262 pp

    Google Scholar 

  • Lenat DR, Crawford JK (1994) Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia 294:185–199. doi:10.1007/BF00021291

    Article  Google Scholar 

  • Lenat DR, Resh VH (2001) Taxonomy and stream ecology-the benefits of genus- and species-level identification. J N Am Benthol Soc 20:287–298. doi:10.2307/1468323

    Article  Google Scholar 

  • Logan P, Furse M (2002) Preparing for the European water framework directive—making the links between habitat and aquatic biota. Aquat Conserv 12:425–437. doi:10.1002/aqc.535

    Article  Google Scholar 

  • Meyer A, Meyer EI, Meyer C (2003) Lotic communities of two small temporary karstic stream systems (East Westphalia, Germany) along a longitudinal gradient of hydrological intermittency. Limnologica 33:271–279. doi:10.1016/S0075-9511(03)80022-1

    Google Scholar 

  • Moog O, Bauernfeind E, Weichselbaumer P (1997) The use of Ephemeroptera as saprobic indicators in Austria. In: Landolt P, Sartori M (eds) Ephemeroptera & Plecoptera: biology-ecology-systematics. MTL-Mauron, Fribourg, pp 254–260

    Google Scholar 

  • Park YS, Chon TS, Kwak IS, Kim JK, Jorgensen SE (2001) Implementation of artificial neural networks in patterning and prediction of exergy in response to temporal dynamics of benthic macroinvertebrate communities in streams. Ecol Modell 146:143–157. doi:10.1016/S0304-3800(01)00302-7

    Article  Google Scholar 

  • Park YS, Céréghino R, Compin A, Lek S (2003) Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol Modell 160:265–280. doi:10.1016/S0304-3800(02)00258-2

    Article  Google Scholar 

  • Park YS, Chon TS, Kwak IS, Lek S (2004) Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Sci Total Environ 327:105–122. doi:10.1016/j.scitotenv.2004.01.014

    Article  CAS  PubMed  Google Scholar 

  • Parkin S, Shaw W, Eades P (2000) Review of information on riparian buffer widths necessary to support sustainable vegetation and meet aquatic functions. NIWA client report ARC00262

  • Probst M, Berenzen N, Lentzen-Godding N, Schulz R, Liess M (2005) Linking land use variables and invertebrate taxon richness in small and medium-sized agricultural streams on a landscape level. Ecotoxicol Environ Saf 60:140–146. doi:10.1016/j.ecoenv.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM (2000) Effects of pastoral development. In: Collier KJ, Winterbourn MJ (eds) New Zealand stream invertebrates: ecology and implications for management. Caxton, Christchurch, pp 208–209

    Google Scholar 

  • Richards C, Haro RJ, Johnson LB, Host GE (1997) Catchment- and reach-scale properties as indicators of macroinvertebrate species traits. Freshw Biol 37:219–230. doi:10.1046/j.1365-2427.1997.d01-540.x

    Article  Google Scholar 

  • Riley RH, Townsend CR, Niyogi DK, Arbuckle CA, Peacock KA (2003) Headwater stream response to grassland agricultural development in New Zealand. N Z J Mar Freshw Res 37:389–403

    Article  CAS  Google Scholar 

  • Rosenberg DM, Resh VH (1993) Biomonitoring and benthic macroinvertebrates. Chapman & Hall, London, 488 pp

    Google Scholar 

  • Sánchez-Fernández D, Abellán P, Mellado A, Velasco J, Millán A (2006) Are water beetles good indicators of biodiversity in Mediterranean aquatic systems? The case of the Segura river basin (SE Spain). Biodivers Conserv 15:4507–4520. doi:10.1007/s10531-005-5101-x

    Article  Google Scholar 

  • Stubauer I, Moog O (2000) Taxonomic sufficiency versus need for information-comments on Austrian experience in biological water quality monitoring. Verh Int Verein Limnol 27:2562–2566

    Google Scholar 

  • Stuijfzand SC, Engels S, Ammelrooy E, Jonker M (1999) Caddisflies (Trichoptera Hydropsychidae) used for evaluating water quality of large European rivers. Arch Environ Contam Toxicol 36:186–192. doi:10.1007/s002449900459

    Article  CAS  PubMed  Google Scholar 

  • The Mathworks Inc (2001) MATLAB version 6.1. Massachusetts

  • Thomas A, Berthélemy C (1991) Préférences et limites écologiques des Elmidae (Coleoptera) dans le Sud-Ouest de la France. Bull Soc Hist Nat Toulouse 127:39–42

    Google Scholar 

  • Townsend CR, Dolédec S, Norris R, Peacock K, Arbuckle C (2003) The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshw Biol 48:768–785. doi:10.1046/j.1365-2427.2003.01043.x

    Article  Google Scholar 

  • Urbanič G, Toman MJ, Krušnik C (2005) Microhabitat type selection of caddisfly larvae (Insecta: Trichoptera) in a shallow lowland stream. Hydrobiologia 541:1–12. doi:10.1007/s10750-004-4314-4

    Article  Google Scholar 

  • Vondracek B, Blann KL, Cox CB, Nerbonne JA, Mumford KG, Nerbonne BA et al (2005) Land use, spatial scale and stream systems: lessons from an agricultural region. Ecol Appl 36:775–791

    Google Scholar 

  • Vought LB, Dahl J, Pedersen CL, Lacoursière JO (1994) Nutrient retention in riparian ecotones. Ambio 23:343–348

    Google Scholar 

  • Wallace JB, Grubaugh JW, Whiles MR (1996) Biotic indices and stream ecosystem processes: results from an experimental study. Ecol Appl 6:140–151. doi:10.2307/2269560

    Article  Google Scholar 

  • Wang L, Lyons J, Kanehl P, Gatti R (1997) Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6–12. doi:10.1577/1548-8446(1997)022<0006:IOWLUO>2.0.CO;2

    Google Scholar 

  • Wharton G, Gilvear DJ (2006) River restoration in the UK: meeting the dual needs of the European Union Water Framework Directive and flood defence. Int J River Basin Manage 4:1–12

    Google Scholar 

  • Williams DD (1996) Environmental constraints in temporary fresh waters and their consequences for the insect fauna. J N Am Benthol Soc 15:634–650. doi:10.2307/1467813

    Article  Google Scholar 

Download references

Acknowledgments

We thank ECOBAG for supporting the IMAQUE, and the EU for supporting MODELKEY (511237-GOCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sovan Lek.

Appendix

Appendix

List of dominant EPTC taxa in each cluster defined by the SOM analysis

Species

Cluster

Species

Cluster

Ephemeroptera

Trichoptera

    Baetis vernus

1

    Brachycentrus subnubilus

2

    B. cf lutheri

2

    Agapetus sp.

2

    B. fuscatus

2

    Goera pilosa

2

    B. rhodani

3

    Goera sp.

2

    Centroptilum luteolum

1

    Cheumatopsyche lepida

2

    Cloeon cognatum

2

    Hydropsyche contubernalis

1

    Procloeon sp.

1

    Hydropsyche cf exocellata

1

    P. bifidum

1

    Hydropsyche siltalai

3

    Caenis luctuosa

1

    Hydroptila sp.

1

    C. pusilla

2

    Lepidostomatidae sp.

2

    Serratella ignita

2

    Athripodes bilineatus

1

    Ephemera lineata

2

    Athripodes sp.

1

    E. danica

3

    Mystacides azurea

2

    Ecdyonurus insignis

2

    Limnephilus spp.

1

    E. dispar

3

    Odontocerum sp.

3

    E. venosus

3

    Chimarra marginata

2

    Electrogena sp.

3

    Philopotamus montanus

1

    Epeorus torrentium

3

    Polycentropodus kingi

2

    Heptagenia sulphurea

2

    Psychomyiia pusilla

2

    Rhithrogena gr semicolorata

3

    Rhyacophila sp1

1

    Habroleptoides confusa

3

    Rhyacophila dorsalis

2

    Habrophlebia sp.

3

    Rhyacophila fasciata

2

    Paraleptophlebia submarginata

2

    Rhyacophila sp2

3

    Oligoneuriella rhenana

2

    Sericostoma personatum

1

    Ephoron virgo

2

Coleoptera

    Potamanthus luteus

2

    Dryops sp.

1

    Siphlonurus aestivalis

1

    Dytiscidae sp.

1

Plecoptera

    Dupophilus brevis

3

    Capnia bifrons

3

    Elmis spp.

3

    Euleuctra geniculata

2

    Esolus parallelepipedus

2

    Leuctra fusca

2

    Limnius sp.

2

    Amphinemura sp.

1

    Limnius opacus

2

    Amphinemura standfussi

3

    Oulimnius troglodytes

2

    Nemoura sp.

1

    Riolus cupreus

1

    Nemoura cinerea

1

    Stenelmis canaliculata

2

    Protonemura intricata

3

    Orectochilus villosus

2

    Isoperla gr grammatica

1

    Helophoridae sp.

3

    Brachyptera risi

3

    Hydraenidae sp.

3

  

    Hydrophilidae sp.

1

  

    Helodes sp.

3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, MY., Leprieur, F., Thomas, A. et al. Impact of agricultural land use on aquatic insect assemblages in the Garonne river catchment (SW France). Aquat Ecol 43, 999–1009 (2009). https://doi.org/10.1007/s10452-008-9218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-008-9218-3

Keywords

Navigation