Skip to main content
Log in

An activity-based formulation for Langmuir adsorption isotherm

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This work presents an activity-based formulation for Langmuir adsorption isotherm. Treating adsorption as a chemical reaction between the gas molecule and the adsorption vacant site, the classical Langmuir isotherm model expresses the reaction in terms of the species concentrations. Designed to capture the surface heterogeneity, the proposed thermodynamic Langmuir isotherm model substitutes the species concentrations with the species activities and calculates the species activity coefficients with the adsorption non-random two-liquid activity coefficient model. The resulting isotherm model accurately represents pure component adsorption isotherms for gases with wide varieties of adsorbents including silica gels, activated carbons, zeolites and metal organic frameworks at various temperatures. With three physically meaningful parameters, the model outperforms the classical Langmuir isotherm model for the 98 isotherms of 33 systems examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Janabi, N., Hill, P., Torrente-Murciano, L., Garforth, A., Gorgojo, P., Siperstein, F., et al.: Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 281, 669–677 (2015)

    Article  CAS  Google Scholar 

  • Bakhtyari, A., Mofarahi, M.: Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A. J. Chem. Eng. Data 59, 626–639 (2014)

    Article  CAS  Google Scholar 

  • Benard, P., Chahine, R.: Modeling of high-pressure adsorption isotherms above the critical temperature on microporous adsorbents: application to methane. Langmuir 13, 808–813 (1997)

    Article  CAS  Google Scholar 

  • Britt, H., Luecke, R.: The estimation of parameters in nonlinear, implicit models. Technometrics 15, 233–247 (1973)

    Article  Google Scholar 

  • Campo, M.C., Ribeiro, A.M., Ferreira, A., Santos, J.C., Lutz, C., Loureiro, J.M., et al.: New 13X zeolite for propylene/propane separation by vacuum swing adsorption. Sep. Purif. Technol. 103, 60–70 (2013)

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49, 1095–1101 (2004)

    Article  CAS  Google Scholar 

  • Do, D., Do, H.: Characterization of micro-mesoporous carbonaceous materials. Calculations of adsorption isotherm of hydrocarbons. Langmuir 18, 93–99 (2002)

    Article  CAS  Google Scholar 

  • Ferreira, A.F., Santos, J.C., Plaza, M.G., Lamia, N., Loureiro, J.M., Rodrigues, A.E.: Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes. Chem. Eng. J. 167, 1–12 (2011)

    Article  CAS  Google Scholar 

  • Foo, K., Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)

    Article  CAS  Google Scholar 

  • Freundlich, H.: Über die adsorption in lösungen. Z. Phys. Chem. 57, 385–470 (1907)

    CAS  Google Scholar 

  • Hyun, S.H., Danner, R.P.: Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves. J. Chem. Eng. Data 27, 196–200 (1982)

    Article  CAS  Google Scholar 

  • Kaur, H., Tun, H., Sees, M., Chen, C.-C.: Local composition activity coefficient model for mixed-gas adsorption equilibria. Adsorption 25, 951–964 (2019)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Laukhuf, W.L., Plank, C.A.: Adsorption of carbon dioxide, acetylene, ethane, and propylene on charcoal at near room temperatures. J. Chem. Eng. Data 14, 48–51 (1969)

    Article  CAS  Google Scholar 

  • Lewis, W., Gilliland, E., Chertow, B., Bareis, D.: Vapor—adsorbate equilibrium. III. The effect of temperature on the binary systems ethylene—propane, ethylene—propylene over silica gel. J. Am. Chem. Soc. 72, 1160–1163 (1950)

    Article  CAS  Google Scholar 

  • Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  CAS  Google Scholar 

  • Maring, B.J., Webley, P.A.: A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenhouse Gas Control 15, 16–31 (2013)

    Article  CAS  Google Scholar 

  • Mathias, P.M., Kumar, R., Moyer, J.D., Schork, J.M., Srinivasan, S.R., Auvil, S.R., et al.: Correlation of multicomponent gas adsorption by the dual-site Langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite. Ind. Eng. Chem. Res. 35, 2477–2483 (1996)

    Article  CAS  Google Scholar 

  • Mofarahi, M., Salehi, S.M.: Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorpt. J. Int. Adsorpt. Soc. 19, 101–110 (2013)

    Article  CAS  Google Scholar 

  • Mu, B., Walton, K.S.: Adsorption equilibrium of methane and carbon dioxide on porous metal-organic framework Zn-BTB. Adsorption 17, 777–782 (2011)

    Article  CAS  Google Scholar 

  • Myers, A.L.: Prediction of adsorption of nonideal mixtures in nanoporous materials. Adsorption 11, 37–42 (2005)

    Article  Google Scholar 

  • Myers, A., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127 (1965)

    Article  CAS  Google Scholar 

  • Olivier, M.G., Jadot, R.: Adsorption of light hydrocarbons and carbon dioxide on silica gel. J. Chem. Eng. Data 42, 230–233 (1997)

    Article  CAS  Google Scholar 

  • Pakseresht, S., Kazemeini, M., Akbarnejad, M.M.: Equilibrium isotherms for CO, CO2, CH4 and C2H4 on the 5A molecular sieve by a simple volumetric apparatus. Sep. Purif. Technol. 28, 53–60 (2002)

    Article  CAS  Google Scholar 

  • Payne, H., Sturdevant, G., Leland, T.: Improved two-dimensional equation of state to predict adsorption of pure and mixed hydrocarbons. Ind. Eng. Chem. Fundam. 7, 363–374 (1968)

    Article  Google Scholar 

  • Ravichandran, A., Khare, R., Chen, C.C.: Predicting NRTL binary interaction parameters from molecular simulations. AIChE J. 64, 2758–2769 (2018)

    Article  CAS  Google Scholar 

  • Reich, R., Ziegler, W.T., Rogers, K.A.: Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres. Ind. Eng. Chem. Process Des. Dev. 19, 336–344 (1980)

    Article  CAS  Google Scholar 

  • Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  • Silva, J.A., Rodrigues, A.E.: Sorption and diffusion of n-pentane in pellets of 5A zeolite. Ind. Eng. Chem. Res. 36, 493–500 (1997)

    Article  CAS  Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948)

    Article  CAS  Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. II. J. Chem. Phys. 18, 1024–1026 (1950)

    Article  CAS  Google Scholar 

  • Sircar, S.: Role of adsorbent heterogeneity on mixed gas adsorption. Ind. Eng. Chem. Res. 30, 1032–1039 (1991)

    Article  CAS  Google Scholar 

  • Sohn, S., Kim, D.: Modification of Langmuir isotherm in solution systems—definition and utilization of concentration dependent factor. Chemosphere 58, 115–123 (2005)

    Article  CAS  Google Scholar 

  • Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B.: Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon. J. Chem. Eng. Data 60, 3148–3158 (2015)

    Article  Google Scholar 

  • Talu, O., Zwiebel, I.: Multicomponent adsorption equilibria of nonideal mixtures. AIChE J. 32, 1263–1276 (1986)

    Article  CAS  Google Scholar 

  • Toth, J.: State equation of the solid-gas interface layers. Acta Chim. Hung. 69, 311–328 (1971)

    CAS  Google Scholar 

  • Walton, K.S., Sholl, D.S.: Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J. 61, 2757–2762 (2015)

    Article  CAS  Google Scholar 

  • Wang, Y., LeVan, M.D.: Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components. J. Chem. Eng. Data 54, 2839–2844 (2009)

    Article  CAS  Google Scholar 

  • Zhang, W., Huang, H., Zhong, C., Liu, D.: Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal–organic frameworks: a combined experimental and molecular simulation study. Phys. Chem. Chem. Phys. 14, 2317–2325 (2012)

    Article  CAS  Google Scholar 

  • Zhang, Z., Zhou, J., Xing, W., Xue, Q., Yan, Z., Zhuo, S., et al.: Critical role of small micropores in high CO2 uptake. Phys. Chem. Chem. Phys. 15, 2523–2529 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office Award Number DE-EE0007888. The authors further acknowledge the financial support of the Jack Maddox Distinguished Engineering Chair Professorship in Sustainable Energy, sponsored by the J.F Maddox Foundation. C.-K. Chang acknowledges the WOCE REU program at Texas Tech University for sponsoring his research at TTU. C.-K. also acknowledges H. Kaur for insightful discussions on the aNRTL model. C.-K. further thanks Md Islam and Y. Hao for technical help in the use of Aspen Plus process simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chau-Chyun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CK., Tun, H. & Chen, CC. An activity-based formulation for Langmuir adsorption isotherm. Adsorption 26, 375–386 (2020). https://doi.org/10.1007/s10450-019-00185-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00185-4

Keywords

Navigation