Skip to main content

Advertisement

Log in

Prediction of the sorption coefficient for the adsorption of PAHs on MWCNT based on hybrid QSPR-molecular docking approach

  • Published:
Adsorption Aims and scope Submit manuscript

A Correction to this article was published on 21 March 2019

This article has been updated

Abstract

In this study, quantitative structure–property relationship (QSPR) methodology employed for modeling of the sorption coefficient (log KCNT) of 13 polycyclic aromatic hydrocarbons (PAHs) on multiwall carbon nanotube (MWCNT) adsorbent. A molecular docking simulation used to present a reliable and accurate QSPR model with defining the distance and best orientation of PAHs structures on nano-adsorbent. A genetic algorithm-multiple linear regression method was employed for implementation of QSPR model. In this model, the square of correlation coefficients (R2) was 0.945 and 0.890, and the root mean square errors (RMSE) were 0.08 and 0.18 for the training and test sets, respectively. Also, inspection to selected descriptors indicates the electrostatic and steric parameters of PAHs are the predominant factors responsible on the log KCNT values. These results can be used for prediction of sorption coefficient of other PAHs by MWCNT and modify the surface of the adsorbent for improving the log KCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 21 March 2019

    The original version of the article contained mistakes in equations. The corrected equations are given below.

References

  • Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F.: Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1. 0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Ambure, P., Aher, R.B., Gajewicz, A., Puzyn, T., Roy, K.: “NanoBRIDGES” software: open access tools to perform QSAR and nano-QSAR modeling. Chemom. Intell. Lab. Syst. 147, 1–13 (2015)

    Article  CAS  Google Scholar 

  • Anjum, M., Miandad, R., Waqas, M., Gehany, F., Barakat, M.: Remediation of wastewater using various nano-materials. Arab. J. Chem. (2016). https://doi.org/10.1016/j.arabjc.2016.10.004

    Article  Google Scholar 

  • Atkinson, A.C.: Plots, Transformations and Regression; An Introduction to Graphical Methods of Diagnostic Regression Analysis. Clarendon Press, Oxford (1985)

    Google Scholar 

  • Bibby, J., Kent, J., Mardia, K.: Multivariate Analysis. Academic Press, London (1979)

    Google Scholar 

  • Bjørseth, A.: Handbook of Polycyclic Aromatic Hydrocarbons. Marcel Dekker, New York (1983)

    Google Scholar 

  • Carpignano, R., Barni, E., Di Modica, G., Grecu, R., Bottaccio, G.: Quantitative relationships between chemical structure and technical properties of 4-aminoazobenzene sulphonic acid dyes. Dyes Pigm. 4(3), 195–211 (1983). https://doi.org/10.1016/0143-7208(83)80017-5

    Article  CAS  Google Scholar 

  • Chen, C.-H., Huang, C.-C.: Hydrogen adsorption in defective carbon nanotubes. Sep. Purif. Technol. 65(3), 305–310 (2009)

    Article  CAS  Google Scholar 

  • Chen, C., Wang, X.: Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45(26), 9144–9149 (2006)

    Article  CAS  Google Scholar 

  • Chen, C., Hu, J., Xu, D., Tan, X., Meng, Y., Wang, X.: Surface complexation modeling of Sr (II) and Eu (III) adsorption onto oxidized multiwall carbon nanotubes. J. Colloid Interface Sci. 323(1), 33–41 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Wang, X., Nagatsu, M.: Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ. Sci. Technol. 43(7), 2362–2367 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Davood, A., Reza Nematollahi, A., Iman, M., Shafiee, A.: Synthesis and docking studies of new 1, 4-dihydropyridines containing 4-(5)-chloro-2-ethyl-5-(4)-imidazolyl substituent as novel calcium channel agonist. Arch. Pharm. Res. 32(4), 481–487 (2009)

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira Galvão, M.F., de Oliveira Alves, N., Ferreira, P.A., Caumo, S., de Castro Vasconcellos, P., Artaxo, P., de Souza Hacon, S., Roubicek, D.A., de Medeiros, S.R.B.: Biomass burning particles in the Brazilian Amazon region: mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 233, 960–970 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Dumanoglu, Y., Gaga, E.O., Gungormus, E., Sofuoglu, S.C., Odabasi, M.: Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants. Sci. Total Environ. 580, 920–935 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Durrant, J.D., McCammon, J.A.: BINANA: a novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 29(6), 888–893 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatemi, M.H., Gharaghani, S., Mohammadkhani, S., Rezaie, Z.: Prediction of selectivity coefficients of univalent anions for anion-selective electrode using support vector machine. Electrochim. Acta 53(12), 4276–4282 (2008)

    Article  CAS  Google Scholar 

  • Fatemi, M.H., Heidari, A., Gharaghani, S.: QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors. J. Theor. Biol. 369, 13–22 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Gaur, A., Shim, M.: Substrate-enhanced O2 adsorption and complexity in the Raman G-band spectra of individual metallic carbon nanotubes. Phys. Rev. B 78(12), 125422 (2008)

    Article  CAS  Google Scholar 

  • Goering, J., Kadossov, E., Burghaus, U.: Adsorption kinetics of alcohols on single-wall carbon nanotubes: an ultrahigh vacuum surface chemistry study. J. Phys. Chem. C 112(27), 10114–10124 (2008)

    Article  CAS  Google Scholar 

  • Heidari, A., Fatemi, M.H.: Hybrid docking-nano-QSPR: an alternative approach for prediction of chemicals adsorption on nanoparticles. Nano 11(07), 1650078 (2016)

    Article  CAS  Google Scholar 

  • Herrera-Herrera, A.V., González-Curbelo, M., Hernández-Borges, J., Rodríguez-Delgado, M.: Carbon nanotubes applications in separation science: a review. Anal. Chim. Acta 734, 1–30 (2012). https://doi.org/10.1016/j.aca.2012.04.035

    Article  CAS  PubMed  Google Scholar 

  • Huey, R., Morris, G.M.: Using AutoDock 4 with AutoDocktools: A Tutorial, pp. 54–56. The Scripps Research Institute, La Jolla (2008)

    Google Scholar 

  • HyperChem, H.: Release 7 for windows. HyperCube, Ed (2002)

    Google Scholar 

  • Hyung, H., Kim, J.-H.: Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 42(12), 4416–4421 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Kah, M., Zhang, X., Jonker, M.T., Hofmann, T.: Measuring and modeling adsorption of PAHs to carbon nanotubes over a six order of magnitude wide concentration range. Environ. Sci. Technol 45(14), 6011–6017 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Katritzky, A., Lobanov, V., Karelson, M.: CODESSA: Reference Manual. University of Florida, Gainesville (1994)

    Google Scholar 

  • Katritzky, A., Lobanov, V., Karelson, M.: CODESSA: Training Manual. University of Florida, Gainesville (1995)

    Google Scholar 

  • Katritzky, A.R., Kuanar, M., Slavov, S., Hall, C.D., Karelson, M., Kahn, I., Dobchev, D.A.: Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem. Rev. 110(10), 5714–5789 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Kayser, H.: Ueber die verdichtung von gasen an oberflächen in ihrer abhängigkeit von druck und temperatur. Annalen der Physik 250(11), 450–468 (1881)

    Article  Google Scholar 

  • Khajeh, M., Laurent, S., Dastafkan, K.: Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113(10), 7728–7768 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Kirpichenok, M., Zefirov, N.: Electronegativity and geometry of molecules. 1. principles of developed approach and analysis of the effect of nearest electrostatic interactions on the bond length in organic-molecules. Zhurnal Organicheskoi Khimii 23(4), 673–691 (1987)

    CAS  Google Scholar 

  • Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B.: Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357(3–4), 263–266 (2002)

    Article  CAS  Google Scholar 

  • Li, Y.-H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., Wei, B.: Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14), 2787–2792 (2003)

    Article  CAS  Google Scholar 

  • Liang, X., Liu, S., Wang, S., Guo, Y., Jiang, S.: Carbon-based sorbents: carbon nanotubes. J. Chromatogr. A 1357, 53–67 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Yan, C., Ding, X., Wang, X., Fu, Q., Zhao, Q., Zhang, Y., Duan, Y., Qiu, X., Zheng, M.: Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. Sci. Total Environ. 584, 307–317 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Marleau, G., Hebert, A., Roy, R.: A user guide for DRAGON. Version DRAGON_000331 release 3.04. Report IGE-174 Rev 5 (2000)

  • Masenelli-Varlot, K., McRae, E., Dupont-Pavlovsky, N.: Comparative adsorption of simple molecules on carbon nanotubes: dependence of the adsorption properties on the nanotube morphology. Appl. Surf. Sci. 196(1–4), 209–215 (2002)

    Article  CAS  Google Scholar 

  • Morris, G., Goodsell, D., Huey, R., Olson, A.: AutoDock Version 2.4. The Scripps Research Institute, Department of Molecular Biology, La Jolla (1998)

    Google Scholar 

  • Oyibo, J.N., Wegwu, M.O., Uwakwe, A.A., Osuoha, J.O.: Analysis of total petroleum hydrocarbons, polycyclic aromatic hydrocarbons and risk assessment of heavy metals in some selected finfishes at Focados Terminal Delta State. Environ. Nanotechnol. Monit. Manag. (2017). https://doi.org/10.1016/j.enmm.2017.11.002

    Article  Google Scholar 

  • Pan, B., Xing, B.: Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42(24), 9005–9013 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Qiao, Y., Wei, Z., Feng, J., Chen, Y., Li, P., Wang, W., Ma, Y., Yuan, Z.: Rapid and efficient screening of adsorbent for oligopeptide using molecular docking and isothermal titration calorimetry. J. Sep. Sci. 32(14), 2462–2468 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Ren, X., Chen, C., Nagatsu, M., Wang, X.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2), 395–410 (2011). https://doi.org/10.1016/j.cej.2010.08.045

    Article  CAS  Google Scholar 

  • Stine, R.A.: Graphical interpretation of variance inflation factors. Am. Stat. 49(1), 53–56 (1995)

    Google Scholar 

  • Todeschini, R., Consonni, V., Mauri, A., Pavan, M.: DRAGON-Software for the calculation of molecular descriptors. Web Version 3 (2003)

  • Yun, Y., Gao, R., Yue, H., Liu, X., Li, G., Sang, N.: Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis. Sci. Total Environ. 580, 632–640 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Zefirov, N., Kirpichenok, M., Ismailov, F., Trofimov, M.: Calculation schemes for atomic electronegativities in molecular graphs within the framework of Sanderson principle. Dokl. Akad. Nauk SSSR 296(4), 883–887 (1987)

    CAS  Google Scholar 

  • Zhang, Y., Wu, B., Xu, H., Liu, H., Wang, M., He, Y., Pan, B.: Nanomaterials-enabled water and wastewater treatment. NanoImpact 3, 22–39 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Pahlavan Yali.

Additional information

The original version of this article was revised: The errors in the equations have been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahlavan Yali, Z., Fatemi, M.H. Prediction of the sorption coefficient for the adsorption of PAHs on MWCNT based on hybrid QSPR-molecular docking approach. Adsorption 25, 737–743 (2019). https://doi.org/10.1007/s10450-018-9994-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9994-6

Keywords

Navigation