Skip to main content
Log in

Effects of pore structure and surface chemical characteristics on the adsorption of organic vapors on titanate nanotubes

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Effects of pore structure and surface chemical characteristics of titanate nanotubes (TNTs) on their adsorptive removal of organic vapors were investigated. TNTs were prepared via a hydrothermal treatment of TiO2 powders in a 10 M NaOH solution at 150 °C for 24 h, and subsequently washed with HCl aqueous solution of different concentrations. Effects of acid washing process (or the sodium content) on the microstructures and surface chemical characteristics of TNTs were characterized with nitrogen adsorption-desorption isotherms, FTIR, and water vapor adsorption isotherms. For the adsorption experiments, gravimetric techniques were employed to determine the adsorption capacities of TNTs for four organic vapors with similar heats of vaporization (i.e., comparable heats of adsorption) but varying dipole moments and structures, including n-hexane, cyclohexane, toluene, and methyl ethyl ketone (MEK), at isothermal conditions of 20 and 25 °C. The experimental data were correlated by well-known vapor phase models including BET and GAB models. Isosteric heats of adsorption were calculated and heat curves were established. Equilibrium isotherms of organic vapors on TNTs were type II, characterizing vapor condensation to form multilayers. The specific surface area (and pore volume) and hydrophilicity of TNTs were the dominating factors for the determination of their organic vapors adsorption capacity. The GAB isotherm equation fitted the experimental data more closely than the BET equation. The heats of adsorption showed that the adsorption of organic vapors on TNTs was primarily due to physical forces and adsorbates with larger polarity might induce a stronger interaction with TNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnihotri, S., Rostam-Abadi, M., Rood, M.J.: Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes. Carbon 42, 2699–2710 (2004)

    Article  CAS  Google Scholar 

  • Agnihotri, S., Rood, M.J., Rostam-Abadi, M.: Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 43, 2379–2388 (2005)

    Article  CAS  Google Scholar 

  • Anderson, R.B.: Modifications of the Brunauer, Emmett and Teller equation. J. Am. Chem. Soc. 68, 686–691 (1946)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • Chiang, A.S.T., Lee, C.K., Chang, Z.H.: Adsorption and diffusion of aromatics in AlPO4-5. Zeolites 11, 380–386 (1991)

    Article  CAS  Google Scholar 

  • Clark, A.: The Theory of Adsorption. Academic Press, New York (1970)

    Google Scholar 

  • De Boer, J.H.: The Dynamical Character of Adsorption. Clarendon, Oxford (1953)

    Google Scholar 

  • Dural, N.H., Chen, C.H.: Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils. J. Hazard. Mater. 53, 75–92 (1997)

    Article  CAS  Google Scholar 

  • Hill, T.L.: Statistical Mechanics. McGraw-Hill, New York (1960)

    Google Scholar 

  • Huang, J., Cao, Y., Liu, Z., Deng, Z., Tang, F., Wang, W.: Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chem. Eng. J. 180, 75–80 (2012)

    Article  CAS  Google Scholar 

  • Juang, L.C., Lee, C.K., Wang, C.C., Hung, S.H., Lyu, M.D.: Adsorptive removal of acid red 1 from aqueous solution with surfactant modified titanate nanotubes. Environ. Eng. Sci. 25(4), 519–528 (2008)

    Article  CAS  Google Scholar 

  • Kasuga, T.: Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films 496, 141–145 (2006)

    Article  CAS  Google Scholar 

  • Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160–3163 (1998)

    Article  CAS  Google Scholar 

  • Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.: Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307–1311 (1999)

    Article  CAS  Google Scholar 

  • Lee, C.K., Liu, S.S., Juang, L.C., Wang, C.C., Lyu, M.D., Hung, S.H.: Application of titanate nanotubes for dyes adsorptive removal from aqueous solution. J. Hazard. Mater. 148, 756–760 (2007a)

    Article  CAS  Google Scholar 

  • Lee, C.K., Wang, C.C., Lyu, M.D., Juang, L.C., Liu, S.S., Hung, S.H.: Effects of sodium content and calcination temperature on the morphology, structure, and photocatalytic activity of nanotubular titanates. J. Colloid Interface Sci. 316, 347–354 (2007b)

    Google Scholar 

  • Lee, C.K., Lin, K.S., Wu, C.F., Lyu, M.D., Lo, C.C.: Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes. J. Hazard. Mater. 150, 494–503 (2008a)

    Article  CAS  Google Scholar 

  • Lee, C.K., Wang, C.C., Juang, L.C., Lyu, M.D., Hung, S.H., Liu, S.S.: Effects of sodium content on the microstructures and basic dye cation exchange of titanate nanotubes. Colloids Surf. A, Physicochem. Eng. Asp. 317, 164–173 (2008b)

    Article  CAS  Google Scholar 

  • Lee, C.K., Chen, H.C., Liu, S.S., Huang, F.C.: Effects of acid washing treatment on the adsorption equilibrium of volatile organic compounds on titanate nanotubes. J. Taiwan Inst. Chem. Eng. 41(3), 373–380 (2010)

    Article  CAS  Google Scholar 

  • Lin, S.H., Juang, R.S.: Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater. 92, 315–326 (2002)

    Article  CAS  Google Scholar 

  • Liu, S.S., Lee, C.K., Chen, H.C., Wang, C.C., Juang, L.C.: Application of titanate nanotubes for Cu(II) ions adsorptive removal from aqueous solution. Chem. Eng. J. 147(2–3), 188–193 (2009)

    Article  CAS  Google Scholar 

  • Nie, X.T., Teh, Y.L.: Titanate nanotubes as superior adsorbents for removal of lead(II) ions from water. Mater. Chem. Phys. 123, 494–497 (2010)

    Article  CAS  Google Scholar 

  • Ooka, C., Yoshida, H., Suzuki, K., Hattori, T.: Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous Mesoporous Mater. 67, 143–150 (2004)

    Article  CAS  Google Scholar 

  • Sheng, G., Yang, S., Sheng, J., Zhao, D., Wang, X.: Influence of solution chemistry on the removal of Ni(II) from aqueous solution to titanate nanotubes. Chem. Eng. J. 168, 178–182 (2011)

    Article  CAS  Google Scholar 

  • Weng, L.Q., Song, S.H., Hodgson, S., Baker, A., Yu, J.: Synthesis and characterisation of nanotubular titanates and titania. J. Eur. Ceram. Soc. 26, 1405–1409 (2006)

    Article  CAS  Google Scholar 

  • Xiong, L., Yang, Y., Mai, J., Sun, W., Zhang, C., Wei, D., Chen, Q., Ni, J.: Adsorption behavior of methylene blue onto titanate nanotubes. Chem. Eng. J. 156, 313–320 (2010)

    Article  CAS  Google Scholar 

  • Yoshida, R., Suzuki, Y., Yoshikawa, S.: Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater. Chem. Phys. 91, 409–416 (2005)

    Article  CAS  Google Scholar 

  • Young, D.M., Crowell, A.D.: Physical Adsorption of Gases. Butterworth, London (1962)

    Google Scholar 

  • Yu, J., Yu, H.: Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals. Mater. Chem. Phys. 100, 507–512 (2006)

    Article  CAS  Google Scholar 

  • Yu, J., Yu, H., Cheng, B., Trapalis, C.: Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J. Mol. Catal. A, Chem. 249, 135–142 (2006a)

    Article  CAS  Google Scholar 

  • Yu, H., Yu, J., Cheng, B., Zhou, M.: Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. J. Solid State Chem. 179, 349–354 (2006b)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant NSC99-2221-E-238-010 of National Science Council (Taiwan, ROC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Kung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CK., Fen, SK., Chao, HP. et al. Effects of pore structure and surface chemical characteristics on the adsorption of organic vapors on titanate nanotubes. Adsorption 18, 349–357 (2012). https://doi.org/10.1007/s10450-012-9412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9412-4

Keywords

Navigation