Skip to main content
Log in

Characterization of Supported Ionic Liquid Phase (SILP) materials prepared from different supports

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Supported ionic liquid phase (SILP) materials are a recent concept where a film of ionic liquid (IL) is immobilized on a solid phase, combining the advantages of ILs (non volatility, high solvent capacity, etc.) with those of heterogeneous support materials. In this work, new SILP materials were prepared using a series of supports with different porosity and chemical nature. An imidazolium-based IL, 1-methyl-3-octylimidazolium hexafluorophosphate (OmimPF6), was confined at variable contents (5–60% w/w) in three different activated carbons (ACs), silica (SiO2), alumina (Al2O3) and titania (TiO2).

For the first time, a systematic characterization of different SILP systems has been carried out applying a variety of analytical and spectroscopic techniques to provide information of interest on these materials. Elemental analysis (EA), adsorption–desorption isotherms of N2 at 77 K, mercury porosimetry, termogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM) and energy dispersive X-ray (EDX) were conducted to explore confinement effects. The results demonstrate that EA is a useful tool for quantifying the amount of imidazolium-based IL incorporated on support, independently of the nature of the solid. An excellent correlation has been obtained between the percentage of elemental nitrogen and the IL loaded on the support. The combination of nitrogen adsorption–desorption isotherms at 77 K and mercury porosimetry measurements was used to characterize the pore structure of both supports and SILP materials. It was found that depending on the available pores in the solid support, the IL tends to fill micropores firstly, then mesopores and lately in macropores. Thermal properties of SILP materials were studied herein by using both TGA and DSC methods, evidencing that the stability of SILP materials and the decomposition mechanism are strongly dependent on the surface chemistry of the solid support. SEM and EDX provided evidences of external surface coverage by ILs and filling of macropores at high IL load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Bara, J.E., Carlisle, T.K., Gabriel, C.J., Camper, D., Finotello, A., Gin, D.L., et al.: Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 48(6), 2739–2751 (2009)

    Article  CAS  Google Scholar 

  • Chen, S.Y., Han, C.C., Tsai, C.H., Huang, J., Chen-Yang, Y.W.: Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. J. Power Sources 171(2), 363–372 (2007)

    Article  CAS  Google Scholar 

  • Fang, G., Chen, J., Wang, J., He, J., Wang, S.: N-methylimidazolium ionic liquid-functionalized silica as a sorbent for selective solid-phase extraction of 12 sulfonylurea herbicides in environmental water and soil samples. J. Chromatogr. A 1217(10), 1567–1574 (2010)

    Article  CAS  Google Scholar 

  • Fernandez, A., Torrecilla, J.S., Garcia, J., Rodriguez, F.: Thermophysical properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-butyl-3-methylimidazolium methylsulfate ionic liquids. J. Chem. Eng. Data 52, 1979–1983 (2007)

    Article  CAS  Google Scholar 

  • Fontanals, N., Ronka, S., Borrull, F., Trochimczuk, A.W., Marcé, R.M.: Supported imidazolium ionic liquid phases: a new material for solid-phase extraction. Talanta 80(1), 250–256 (2009)

    Article  CAS  Google Scholar 

  • Han, X., Armstrong, D.W.: Ionic liquids in separations. Acc. Chem. Res. 40, 1079–1086 (2007)

    Article  CAS  Google Scholar 

  • Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., et al.: Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 4(5), 407–413 (2002)

    Article  CAS  Google Scholar 

  • Huang, J., Riisager, A., Wasserscheid, P., Fehrmann, R.: Reversible physical absorption of SO2 by ionic liquids. Chem. Commun. 38, 4027–4029 (2006)

    Article  Google Scholar 

  • Ilconich, J., Myers, C., Pennline, H., Luebke, D.: Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125 °C. J. Membr. Sci. 298(1–2), 41–47 (2007)

    Article  CAS  Google Scholar 

  • Joni, J., Haumann, M., Wasserscheid, P.: Continuous gas-phase isopropylation of toluene and cumene using highly acidic Supported Ionic Liquid Phase (SILP) catalysts. Appl. Catal. A, Gen. 372(1), 8–15 (2010)

    Article  CAS  Google Scholar 

  • Karna, M., Lahtinen, M., Valkonen, J.: Preparation and characterization of new low melting ammonium-based ionic liquids with ether functionality. J. Mol. Struct. 922(1–3), 64–76 (2009)

    Article  CAS  Google Scholar 

  • Kim, K.M., Park, N.G., Ryu, K.S., Chang, S.H.: Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles. Polymer 43(14), 3951–3957 (2002)

    Article  CAS  Google Scholar 

  • Kohler, F., Roth, D., Kuhlmann, E., Wasserscheid, P., Haumann, M.: Continuous gas-phase desulfurisation using supported ionic liquid phase (SILP) materials. Green Chem. 12(6), 979–984 (2010)

    Article  CAS  Google Scholar 

  • Mehnert, C.P.: Supported ionic liquid phases. Chemistry 11(1), 50–56 (2005)

    Article  Google Scholar 

  • Muldoon, M.J.: Modern multiphase catalysis: new developments in the separation of homogeneous catalysts. Dalton Trans. 39(2), 337–348 (2010)

    Article  CAS  Google Scholar 

  • Palomar, J., Lemus, J., Gilarranz, M.A., Rodriguez, J.J.: Adsorption of ionic liquids from aqueous effluents by activated carbon. Carbon 47(7), 1846–1856 (2009)

    Article  CAS  Google Scholar 

  • Riisager, A., Wasserscheid, P., van Hal, R., Fehrmann, R.: Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts. J. Catal. 219(2), 452–455 (2003)

    Article  CAS  Google Scholar 

  • Riisager, A., Fehrmann, R., Flicker, S., van Hal, R., Haumann, M., Wasserscheid, P.: Very stable and highly regioselective supported ionic-liquid-phase (SILP) catalysis: continuous flow fixed-bed hydroformylation of propene. Angew. Chem., Int. Ed. Engl. 44(5), 815–819 (2005a)

    Article  CAS  Google Scholar 

  • Riisager, A., Fehrmann, R., Haumann, M., Gorle, B.S.K., Wasserscheid, P.: Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene. Ind. Eng. Chem. Res. 44(26), 9853–9859 (2005b)

    Article  CAS  Google Scholar 

  • Riisager, A., Fehrmann, R., Haumann, M., Wasserscheid, P.: Supported ionic liquids: versatile reaction and separation media. Top. Catal. 40(1–4), 91–102 (2006a)

    Article  CAS  Google Scholar 

  • Riisager, A., Fehrmann, R., Haumann, M., Wasserscheid, P.: Supported ionic liquid phase (SILP) catalysis: an innovative concept for homogeneous catalysis in continuous fixed-bed reactors. Eur. J. Inorg. Chem. 4, 695–706 (2006b)

    Article  Google Scholar 

  • Rogers, R.D., Seddon, K.R.: Ionic Liquids as Green Solvents: Progress and Prospects, p. 669. American Chemical Society, Washington (2003)

    Book  Google Scholar 

  • Rogers, R.D., Seddon, K.R.: Ionic Liquids, IIIA: Fundamentals, Progress, Challenges and Opportunities—Transformations and Processes, p. 674. American Chemical Society, Washington (2005)

    Google Scholar 

  • Ruta, M., Laurenczy, G., Dyson, P.J., Kiwi-Minsker, L.: Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J. Phys. Chem. C 112(46), 17814–17819 (2008)

    Article  CAS  Google Scholar 

  • Shi, F., Deng, Y.: Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 62(1–3), 239–244 (2005)

    Article  Google Scholar 

  • Sun, A.J., Zhang, J.L., Li, C.X., Meng, H.: Gas phase conversion of carbon tetrachloride to alkyl chlorides catalyzed by supported ionic liquids. Chin. J. Chem. 27(9), 1741–1748 (2009)

    Article  CAS  Google Scholar 

  • van Grieken, R., Serrano, D.P., Aguado, J., Garcia, R., Rojo, C.: Thermal and catalytic cracking of polyethylene under mild conditions. J. Anal. Appl. Pyrolysis 58, 127–142 (2001)

    Article  Google Scholar 

  • Vangeli, O.C., Romanos, G.E., Beltsios, K.G., Fokas, D., Kouvelos, E.P., Stefanopoulos, K.L., et al.: Grafting of imidazolium based ionic liquid on the pore surface of nanoporous materials-study of physicochemical and thermodynamic properties. J. Phys. Chem. B 114(19), 6480–6491 (2010)

    Article  CAS  Google Scholar 

  • Vioux, A., Viau, L., Volland, S., Le Bideau, J.: Use of ionic liquids in sol–gel: ionogels and applications. C. R., Chim. 13(1–2), 242–255 (2010)

    Article  CAS  Google Scholar 

  • Virtanen, P., Karhu, H., Kordas, K., Mikkola, J.: The effect of ionic liquid in supported ionic liquid catalysts (SILCA) in the hydrogenation of α,β-unsaturated aldehydes. Chem. Eng. Sci. 62(14), 3660–3671 (2007)

    Article  CAS  Google Scholar 

  • Virtanen, P., Mikkola, J.P., Toukoniitty, E., Karhu, H., Kordas, K., Eranen, K., et al.: Supported ionic liquid catalysts-from batch to continuous operation in preparation of fine chemicals. Catal. Today 147, S144 (2009a)

    Article  CAS  Google Scholar 

  • Virtanen, P., Karhu, H., Toth, G., Kordas, K., Mikkola, J.P.: Towards one-pot synthesis of menthols from citral: modifying supported ionic liquid catalysts (SILCAs) with Lewis and Bronsted acids. J. Catal. 263(2), 209–219 (2009b)

    Article  CAS  Google Scholar 

  • Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley–VCH, Weinheim (2008)

    Google Scholar 

  • Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071 (1999)

    Article  CAS  Google Scholar 

  • Werner, S., Szesni, N., Bittermann, A., Schneider, M.J., Harter, P., Haumann, M., et al.: Screening of supported ionic liquid phase (SILP) catalysts for the very low temperature water-gas-shift reaction. Appl. Catal. A, Gen. 377(1–2), 70–75 (2010)

    Article  CAS  Google Scholar 

  • Wu, W.Z., Han, B.X., Gao, H.X., Liu, Z.M., Jiang, T., Huang, J.: Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew. Chem., Int. Ed. Engl. 43(18), 2415–2417 (2004)

    Article  CAS  Google Scholar 

  • Zhang, Z.M., Wu, L.B., Dong, J., Li, B.G., Zhu, S.P.: Preparation and SO2 sorption/desorption behavior of an ionic liquid supported on porous silica particles. Ind. Eng. Chem. Res. 48(4), 2142–2148 (2009a)

    Article  CAS  Google Scholar 

  • Zhang, J., Ma, Y., Shi, F., Liu, L., Deng, Y.: Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol–gel method. Microporous Mesoporous Mater. 119(1–3), 97–103 (2009b)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemus, J., Palomar, J., Gilarranz, M.A. et al. Characterization of Supported Ionic Liquid Phase (SILP) materials prepared from different supports. Adsorption 17, 561–571 (2011). https://doi.org/10.1007/s10450-011-9327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-011-9327-5

Keywords

Navigation