Skip to main content
Log in

Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This work presents an analysis on the suitability of the Simulated Moving Bed (and pseudo-SMB) technology on separating the mixture obtained from the lactose oxidation catalyzed by glucose-fructose oxidoreductase and glucono-α-lactonase enzymes. These enzymes from the Zymomonas mobilis bacteria are able to oxidize lactose in presence of fructose to its respective organic acid—lactobionic acid—and sorbitol. Some alternative arrays of chromatographic systems, as fixed bed column, SMB unit, 4 section pseudo-SMB, have been explored to separate the multi-component mixture, in such way to make possible the product recovery and the recycle of substrates to the enzymatic reactor. This study involved the definition of appropriate operating conditions and the prediction of the performance of the separation units, or arrangement of units, through modeling and simulations tools. To define the proper operating conditions, inequalities from equilibrium theory and the concept of the separation volume analysis have been considered. In this analysis, equilibrium and kinetic parameters for the compounds adsorbing on DOWEX 50W-X4 resin, in K+ and Ca+2 ion-loadings, have been obtained from chromatographic methods (pulse and adsorption-desorption techniques). The enzymatic kinetic of production of lactobionic acid and sorbitol using permeabilized cells of Z. mobilis is shown. The strategy of keeping the highest value of reaction rate by the integration of a chromatographic system proved to be viable when it was found the feasibility to apply the SMB system in cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, M., Tanimura, M., Tamura, M.: Method of chromatographic separation. U.S. Patent 4,970,002 (1990)

  • Azevedo, D.C.S.: Separation/reaction in simulated moving bed. Ph.D. thesis, University of Porto, Porto, Portugal (2001)

  • Azevedo, D.C.S., Rodrigues, A.E.: Design of a simulated moving bed in the presence of mass-transfer resistances. AIChE J. 45(5), 956–966 (1999)

    Article  CAS  Google Scholar 

  • Bae, Y.S., Moon, J.H., Lee, C.H.: Effects of feed concentration on the startup and performance behaviors of simulated moving bed chromatography. Ind. Eng. Chem. Res. 45(2), 777–790 (2006)

    Article  CAS  Google Scholar 

  • Baminger, U., Ludwig, R., Galhaup, C., Leitner, C., Kulbe, K., Haltrich, D.: Continuous enzymatic regeneration of redox mediators used in bio-transformation reactions employing flavoproteins. J. Mol. Catal. B 11, 541–550 (2001)

    Article  CAS  Google Scholar 

  • Beste, Y.A., Arlt, W.: Side-stream simulated moving-bed chromatography for multicomponent separation. Chem. Eng. Technol. 25(10), 956–962 (2002)

    Article  CAS  Google Scholar 

  • Borges da Silva, E.A., Rodrigues, A.E.: Design of chromatographic multicomponent separation by a pseudo-simulated moving bed. AIChE J. 52(11), 3794–3812 (2006)

    Article  Google Scholar 

  • Borges da Silva, E.A., Rodrigues, A.E.: Design methodology and performance analysis of a pseudo-simulated moving bed for ternary separation. Sep. Sci. Technol. 43(3), 533–566 (2008)

    Article  Google Scholar 

  • Bowen, W.H.: Food components and caries. Adv. Dent. Res. 8(2), 215–220 (1994)

    CAS  Google Scholar 

  • Cen, P., Tsao, G.T.: Recent advances in the simultaneous bioreaction and product separation processes. Sep. Purif. Technol. 3, 58–75 (1993)

    CAS  Google Scholar 

  • Chiang, A.S.T.: Continuous chromatographic process based on SMB technology. AIChE J. 44(8), 1930–1932 (1998)

    Article  CAS  Google Scholar 

  • Coté, A., Brown, W.A., Cameron, D., van Walsum, P.: Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol. J. Dairy Sci. 87, 1608–1620 (2004)

    Article  Google Scholar 

  • Druliolle, H., Kokoh, K.B., Beden, B.: Selective oxidation of lactose to lactobionic acid on lead-adatoms modified platinum-electrodes in Na2CO3+NaHCO3 buffered medium. J. Electroanal. Chem. 385(1), 77–83 (1995)

    Article  Google Scholar 

  • Erzinger, G.S., Silveira, M.M., Lopes da Costa, J.P.C., Vitolo, M., Jonas, R.: Activity of glucose-fructose oxidoreductase in fresh and permeabilised cells of Zymomonas mobilis grown in different glucose concentrations. Braz. J. Microbiol. 34(4), 329–333 (2003)

    Article  CAS  Google Scholar 

  • Fox, P.F., McSweeney, P.L.H.: Lactose. In: Fox, P.F., McSweeney, P.L.H. (eds.) Dairy Chemistry & Biochemistry, pp. 21–66. Kluwer Academic/Plenum, New York (1998)

    Google Scholar 

  • Ganetsos, G., Barker, P.E., Ajongwen, J.N.: Batch and continuous chromatographic systems as combined bioreactors-separators. In: Ganetsos, G., Barker, P.E. (eds.) Preparative and Production Scale Chromatography. Dekker, New York (1993)

    Google Scholar 

  • Heuer, C., Kniep, H., Falk, T., Seidel-Morgenstern, A.: Comparison of various process engineering concepts of preparative liquid chromatography. Chem. Ing. Tech. 69(11), 1535 (1997)

    Article  CAS  Google Scholar 

  • Hur, J.S., Wankat, P.C.: Two-zone SMB/chromatography for center-cut separation from ternary mixtures: Linear isotherm systems. Ind. Eng. Chem. Res. 45(4), 1426–1433 (2006)

    Article  CAS  Google Scholar 

  • Jupke, A., Epping, A., Schmidt-Traub, H.: Optimal design of batch and simulation moving bed chromatographic separation processes. J. Chromatogr. A 944(1–2), 93–117 (2002)

    Article  CAS  Google Scholar 

  • Kawajiri, Y., Biegler, L.T.: Optimization strategies for simulated moving bed and PowerFeed processes. AIChE J. 52(4), 1343–1350 (2006)

    Article  CAS  Google Scholar 

  • Kim, J.K., Wankat, P.C.: Designs of simulated-moving-bed cascades for quaternary separations. Ind. Eng. Chem. Res. 43(4), 1071–1080 (2004)

    Article  CAS  Google Scholar 

  • Kokoh, K.B., Alonso-Vante, N.: Electrocatalytic oxidation of lactose on gold nanoparticle modified carbon in carbonate buffer. J. Appl. Electrochem. 36(2), 147–151 (2006)

    Article  CAS  Google Scholar 

  • Kurup, A.S., Hidajat, K., Ray, A.K.: Optimal operation of a pseudo-SMB process for ternary separation under non-ideal conditions. Sep. Purif. Technol. 51(3), 387–403 (2006)

    Article  CAS  Google Scholar 

  • Maliska, C.R.: Transferência de Calor e Mecânica dos Fluidos Computacional. LTC—Livros Técnicos e Científicos S.A., Rio de Janeiro (1995)

  • Malvessi, E., Concatto, K., Silveira, M.M.: Biotransformação de frutose e lactose em sorbitol e ácido lactobiônico por células de Zymomonas mobilis. In: Proceeding of 5 ° Brazillian seminary of Enzymatic Technology—Enzitec, 2002, Brasília (DF), Brasil (2002)

    Google Scholar 

  • Malvessi, E., Concatto, K., Carra, S., Silveira, M.M.: Formulation of medium for growth and production of ethanol and intracellular enzymes by Zymomonas mobilis. Braz. Arch. Biol. Technol. 49, 139–144 (2006)

    CAS  Google Scholar 

  • Marwaha, S.S., Kennedy, J.F.: Whey-pollution problem and potential utilization. Int. J. Food Sci. Technol. 23(4), 323–336 (1988)

    Google Scholar 

  • Mata, V.G., Rodrigues, A.E.: Separation of ternary mixtures by pseudo-simulated moving bed chromatography. J. Chromatogr. A 939(1–2), 23–40 (2001)

    Article  CAS  Google Scholar 

  • Mihlbachler, K., Fricke, J., Yun, T., Seidel-Morgenstern, A., Schmidt-Traub, H., Guiochon, G.: Effect of the homogeneity of the column set on the performance of a simulated moving bed unit. I. Theory. J. Chromatogr. A 908(1–2), 49–70 (2001)

    Article  CAS  Google Scholar 

  • Murakami, H., Kawano, J., Yoshizumi, H., Nakano, H., Kitahata, S.: Screening of lactobionic acid producing microorganisms. J. Appl. Glycosci. 49, 469–477 (2002)

    CAS  Google Scholar 

  • Navarro, A., Caruel, H., Rigal, L., Phemius, P.: Continuous chromatographic separation process: Simulated moving bed allowing simultaneous withdrawal of three fractions. J. Chromatogr. A 770(1–2), 39–50 (1997)

    Article  CAS  Google Scholar 

  • Nordkvist, M., Nielsen, P.M., Villadsen, J.: Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: Kinetics and operational stability. Biotechnol. Bioeng. 97(4), 694–707 (2007)

    Article  CAS  Google Scholar 

  • Pais, L.S., Loureiro, J.M., Rodrigues, A.E.: Modeling strategies for enantiomers separation by SMB chromatography. AIChE J. 44(3), 561–569 (1998)

    Article  CAS  Google Scholar 

  • Pedruzzi, I., Malvessi, E., Mata, V.G., Silva, E.A.B., Silveira, M.M., Rodrigues, A.E.: Quantification of lactobionic acid and sorbitol from enzymatic reaction of fructose and lactose by high-performance liquid chromatography. J. Chromatogr. A 1145(1–2), 128–132 (2007)

    Article  CAS  Google Scholar 

  • Pedruzzi, I., da Silva, E.A.B., Rodrigues, A.E.: Selection of resins equilibrium and sorption kinetics of lactobionic acid, fructose, lactose and sorbitol. Sep. Purif. Technol. 63(3), 600–611 (2008)

    Article  CAS  Google Scholar 

  • Ruthven, D.M., Ching, C.B.: Counter current and simulated counter-current adsorption separation processes. Chem. Eng. Sci. 44(5), 1011–1038 (1989)

    Article  CAS  Google Scholar 

  • Satory, M., Furlinger, M., Haltrich, D., Kulbe, K.D., Pittner, F., Nidetzky, B.: Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor. Biotechnol. Lett. 19(12), 1205–1208 (1997)

    Article  CAS  Google Scholar 

  • Sayama, K., Kamada, T., Oikawa, S., Masuda, T.: Production of raffinose—a new by-product of the beet sugar-industry. Zucker-Ind. 117(11), 893–898 (1992)

    Google Scholar 

  • Silveira, M., Wisbeck, E., Lemmel, C., Erzinger, G., Lopes da Costa, J., Bertasso, M., Jonas, R.: Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J. Biotechnol. 75, 99–103 (1999)

    Article  CAS  Google Scholar 

  • Storti, G., Mazzotti, M., Morbidelli, M., Carra, S.: Robust design of binary counter-current adsorption separation processes. AIChE J. 39(3), 471–492 (1993)

    Article  CAS  Google Scholar 

  • Strube, J., Haumreisser, S., Schmidt-Traub, H., Schulte, M., Ditz, R.: Comparison of batch elution and continuous simulated moving bed chromatography. Org. Process Res. Dev. 2(5), 305–319 (1998)

    Article  CAS  Google Scholar 

  • Sumimoto, R., Kamada, N.: Lactobionate as the most important component in UW solution for liver preservation. Transplant. Proc. 22(5), 2198–2199 (1990)

    CAS  Google Scholar 

  • Wang, X., Ching, C.B.: Chiral separation of beta-blocker drug (nadolol) by five-zone simulated moving bed chromatography. Chem. Eng. Sci. 60(5), 1337–1347 (2005)

    Article  CAS  Google Scholar 

  • Wankat, P.C.: Simulated moving bed cascades for ternary separations. Ind. Eng. Chem. Res. 40(26), 6185–6193 (2001)

    Article  CAS  Google Scholar 

  • Wooley, R., Ma, Z., Wang, N.H.L.: A nine-zone simulating moving bed for the recovery of glucose and xylose from biomass hydrolyzate. Ind. Eng. Chem. Res. 37(9), 3699–3709 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Borges da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges da Silva, E.A., Pedruzzi, I. & Rodrigues, A.E. Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol. Adsorption 17, 145–158 (2011). https://doi.org/10.1007/s10450-010-9304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9304-4

Keywords

Navigation